Skip to main content
Log in

Synthesis of novel biotin-based carborane amides

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of novel derivatives of d-biotin containing closo- and nido-carborane residues bound to the biotin carbonyl group either directly or via a linker were synthesized. The possibility of synthesizing a d-biotin conjugate containing two closo-carborane moieties and a glutamic acid residue was shown. The obtained compounds are of interest for biological testing as potential boron delivery agents for the boron neutron capture therapy of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G. Russell-Jones, K. McTavish, J. McEwan, J. Rice, D. Nowotnik, J. Inorg. Biochem., 2004, 98, 1625; DOI: https://doi.org/10.1016/j.jinorgbio.2004.07.009.

    Article  CAS  PubMed  Google Scholar 

  2. G. Tripodo, D. Mandracchia, S. Collina, M. Rui, D. Rossi, Med. Chem. (Henderson, NV, U.S.), 2004, S1, 004; DOI: https://doi.org/10.4172/2161-0444.S1-004.

    Google Scholar 

  3. H. M. Said, in Water Soluble Vitamins. Subcellular Biochemistry, vol. 56, Ed. O. Stanger, Springer, Dordrecht, 2012, p. 1–19; DOI: https://doi.org/10.1007/978-94-007-2199-9_1.

  4. A. D. Vadlapudi, R. K. Vadlapatla, D. Pal, A. K. Mitra, Int. J. Pharm. (Amsterdam, Neth.), 2013, 441, 535; DOI: https://doi.org/10.1016/j.ijpharm.2012.10.047.

    Article  CAS  PubMed  Google Scholar 

  5. W. X. Ren, J. Han, S. Uhm, Y. J. Jang, C. Kang, J.-H. Kim, J. S. Kim, Chem. Commun., 2015, 51, 10403; DOI: https://doi.org/10.1039/c5cc03075g.

    Article  CAS  Google Scholar 

  6. S. Maiti, P. Paira, Eur. J. Med. Chem., 2018, 145, 206; DOI: https://doi.org/10.1016/j.ejmech.2018.01.001.

    Article  CAS  PubMed  Google Scholar 

  7. S. Chen, X. Zhao, J. Chen, J. Chen, L. Kuznetsova, S. S. Wong, I. Ojima, Bioconjugate Chem., 2010, 21, 979; DOI: https://doi.org/10.1021/bc9005656.

    Article  Google Scholar 

  8. S. Maiti, N. Park, J. H. Han, H. M. Jeon, J. H. Lee, S. Bhuniya, C. Kang, J. S. Kim, J. Am. Chem. Soc., 2013, 135, 4567; DOI: https://doi.org/10.1021/ja401350x.

    Article  CAS  PubMed  Google Scholar 

  9. S. Park, E. Kim, W. Y. Kim, C. Kang, J. S. Kim, Chem. Commun., 2015, 51, 9343; DOI: https://doi.org/10.1039/c5cc03003j.

    Article  CAS  Google Scholar 

  10. A. Khoury, J. A. Sakoff, J. Gilbert, S. Karan, C. P. Gordon, J. R. Aldrich-Wright, Pharmaceutics, 2022, 14, Art. 2780; DOI: https://doi.org/10.3390/pharmaceutics14122780.

  11. S. Y. Kim, S. H. Cho, Y. M. Lee, Macromol. Res., 2007, 15, 646; DOI: https://doi.org/10.1007/BF03218945.

    Article  CAS  Google Scholar 

  12. D. N. Heo, D. H. Yang, H.-J. Moon, J. B. Lee, M. S. Bae, S. C. Lee, W. J. Lee, I.-C. Sun, I. K. Kwon, Biomaterials, 2012, 33, 856; DOI: https://doi.org/10.1016/j.biomaterials.2011.09.064.

    Article  CAS  PubMed  Google Scholar 

  13. K. Vinothini, N. K. Rajendran, M. A. Munusamy, A. A. Alarfaj, M. Rajan, Mater. Sci. Eng., C, 2019, 100, 676; DOI: https://doi.org/10.1016/j.msec.2019.03.011.

    Article  CAS  Google Scholar 

  14. S. S. Abolmaali, S. Zarenejad, Y. Mohebi, H. Najafi, S. Javanmardi, M. Abedi, A. M. Tamaddon, Int. J. Pharm. (Amsterdam, Neth.), 2022, 624, 122049; DOI: https://doi.org/10.1016/j.ijpharm.2022.122049.

    Article  Google Scholar 

  15. E. P. Diamandis, T. K. Christopoulos, Clin. Chem., 1991, 37, 625; DOI: https://doi.org/10.1093/clinchem/37.5.625.

    Article  CAS  PubMed  Google Scholar 

  16. E. W. Holmes, S. Samarasinghe, M. A. Emanuele, F. Meah, Arch. Pathol. Lab. Med., 2017, 141, 1459; DOI: https://doi.org/10.5858/arpa.2017-0107-LE.

    Article  PubMed  Google Scholar 

  17. P. Chames, H. R. Hoogenboom, P. Henderikx, Methods Mol. Biol. (N. Y., NY, U.S.), 2002, 178, 147; DOI: https://doi.org/10.1385/1-59259-240-6:147.

    CAS  Google Scholar 

  18. D. V. Yashunsky, V. S. Dorokhova, B. S. Komarova, E. Pulovičová, V. B. Krylov, N. E. Nifantiev, Russ. Chem. Bull., 2021, 70, 2208; DOI: https://doi.org/10.1007/s11172-021-3334-9.

    Article  CAS  PubMed  Google Scholar 

  19. H. Barhoumi, A. Maaref, S. Cosnier, C. Martelet, N. Jaffrezic-Renault, IRBM, 2008, 29, 192; DOI: https://doi.org/10.1016/j.rbmret.2007.11.004.

    Article  Google Scholar 

  20. E. Yu. Poimanova, P. A. Shaposhnik, D. S. Anisimov, E. G. Zavyalova, A. A. Trul, M. S. Skorotetcky, O. V. Borshchev, D. Z. Vinnitskiy, M. S. Polinskaya, V. B. Krylov, N. E. Nifantiev, E. V. Agina, S. A. Ponomarenko, ACS Appl. Mater. Interfaces, 2022, 14, 16462; DOI: https://doi.org/10.1021/acsami.1c24109.

    Article  CAS  PubMed  Google Scholar 

  21. E. Yu. Poimanova, P. A. Shaposhnik, P. N. Karaman, D. S. Anisimov, M. S. Skorotetcky, M. S. Polinskaya, O. V. Borshchev, E. V. Agina, S. A. Ponomarenko, Russ. Chem. Bull., 2022, 71, 2116; DOI: https://doi.org/10.1007/s11172-022-3635-7.

    Article  CAS  Google Scholar 

  22. M. Suzuki, Int. J. Clin. Oncol., 2020, 25, 43; DOI: https://doi.org/10.1007/s10147-019-01480-4.

    Article  PubMed  Google Scholar 

  23. T. D. Malouff, D. S. Seneviratne, D. K. Ebner, W. C. Stross, M. R. Waddle, D. M. Trifiletti, S. Krishnan, Front. Oncol., 2021, 11, Art. 601820; DOI: https://doi.org/10.3389/fonc.2021.601820.

  24. W. H. Jin, C. Seldon, M. Butkus, W. Sauerwein, H. B. Giap, Int. J. Part. Ther., 2022, 9, 71; DOI: https://doi.org/10.14338/IJPT-22-00002.1.

    Article  PubMed  PubMed Central  Google Scholar 

  25. S. A. Uspenskii, P. A. Khaptakhanova, Russ. Chem. Bull., 2022, 71, 2533; DOI: https://doi.org/10.1007/s11172-022-3686-9.

    Article  CAS  Google Scholar 

  26. P. Stockmann, M. Gozzi, R. Kuhnert, M. B. Sárosi, E. Hey-Hawkins, Chem. Soc. Rev., 2019, 48, 3497; DOI: https://doi.org/10.1039/c9cs00197b.

    Article  CAS  PubMed  Google Scholar 

  27. D. A. Gruzdev, G. L. Levit, V. P. Krasnov, V. N. Charushin, Coord. Chem. Rev., 2021, 433, 213753; DOI: https://doi.org/10.1016/j.ccr.2020.213753.

    Article  CAS  Google Scholar 

  28. I. B. Sivaev, in Comprehensive Organometallic Chemistry IV (4 ed.), vol. 9, Ed. S. Aldridge, Elsevier, Amsterdam, p. 196–262; DOI: https://doi.org/10.1016/B978-0-12-820206-7.00172-4.

  29. D. S. Wilbur, D. K. Hamlin, M.-K. Chyan, B. B. Kegley, J. Quinn, R. L. Vessella, Bioconjugate Chem., 2004, 15, 601; DOI: https://doi.org/10.1021/bc034229q.

    Article  CAS  Google Scholar 

  30. D. S. Wilbur, M.-K. Chyan, D. K. Hamlin, R. L. Vessella, T. J. Wedge, M. F. Hawthorne, Bioconjugate Chem., 2007, 18, 1226; DOI: https://doi.org/10.1021/bc060345s.

    Article  CAS  Google Scholar 

  31. D. S. Wilbur, M.-K. Chyan, D. K. Hamlin, M. A. Perry, Bioconjugate Chem., 2009, 20, 591; DOI: https://doi.org/10.1021/bc800515d.

    Article  CAS  Google Scholar 

  32. R. R. Kane, K. Drechsel, M. F. Hawthorne, J. Am. Chem. Soc., 1993, 115, 8853; DOI: https://doi.org/10.1021/ja00072a054.

    Article  CAS  Google Scholar 

  33. R. H. Pak, F. J. Primus, K. J. Rickard-Dickson, L. L. Ng, R. R. Kane, M. F. Hawthorne, Proc. Natl. Acad. Sci. USA, 1995, 92, 6986; DOI: https://doi.org/10.1073/pnas.92.15.6986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Lanfranco, D. Alberti, S. Parisotto, P. Renza, V. Lecomte, S. Geninatti Crich, A. Deagostino, Org. Biomol. Chem., 2022, 20, 5342; DOI: https://doi.org/10.1039/D2OB00764A.

    Article  CAS  PubMed  Google Scholar 

  35. D. A. Gruzdev, A. A. Telegina, G. L. Levit, O. I. Solovieva, T. Ya. Gusel’nikova, I. A. Razumov, V. P. Krasnov, V. N. Charushin, Int. J. Mol. Sci., 2022, 23, Art. 13726; DOI: https://doi.org/10.3390/ijms232213726.

  36. D. A. Gruzdev, A. A. Telegina, V. A. Ol’shevskaya, V. L. Andronova, G. A. Galegov, V. V. Zarubaev, G. L. Levit, V. P. Krasnov, Russ. Chem. Bull., 2022, 71, 2375; DOI: https://doi.org/10.1007/s11172-022-3665-1.

    Article  CAS  Google Scholar 

  37. D. A. Gruzdev, A. A. Telegina, G. L. Levit, V. P. Krasnov, J. Org. Chem., 2022, 87, 5437; DOI: https://doi.org/10.1021/acs.joc.2c00151.

    Article  CAS  PubMed  Google Scholar 

  38. M. Skander, N. Humbert, J. Collot, J. Gradinaru, G. Klein, A. Loosli, J. Sauser, A. Zocchi, F. Gilardoni, T. R. Ward, J. Am. Chem. Soc., 2004, 126, 14411; DOI: https://doi.org/10.1021/ja0476718.

    Article  CAS  PubMed  Google Scholar 

  39. C. Bourget, E. Trévisiol, I. Bridon, M. Kotera, J. Lhomme, A. Laayoun, Bioorg. Med. Chem., 2005, 13, 1453; DOI: https://doi.org/10.1016/j.bmc.2004.12.046.

    Article  CAS  PubMed  Google Scholar 

  40. J. Heredia-Moya, K. L. Kirk, Bioorg. Med. Chem., 2008, 16, 5743; DOI: https://doi.org/10.1016/j.bmc.2008.03.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. Hidaka, M. Adachi, Y. Tsuda, Bioconjugate Chem., 2019, 30, 1979; DOI: https://doi.org/10.1021/acs.bioconjchem.9b00195.

    Article  CAS  Google Scholar 

  42. M. Caplow, Biochemistry, 1969, 8, 2656; DOI: https://doi.org/10.1021/bi00834a061.

    Article  CAS  PubMed  Google Scholar 

  43. A. Berkessel, R. Breslow, Bioorg. Chem., 1986, 14, 249; DOI: https://doi.org/10.1016/0045-2068(86)90036-2.

    Article  CAS  Google Scholar 

  44. C. L. Perrin, T. J. Dwyer, J. Am. Chem. Soc., 1987, 109, 5163; DOI: https://doi.org/10.1021/ja00251a020.

    Article  CAS  Google Scholar 

  45. C. Fraschetti, A. Filippi, L. Guarcini, V. Steinmetz, M. Speranza, J. Phys. Chem. B, 2015, 119, 6198; DOI: https://doi.org/10.1021/acs.jpcb.5b02660.

    Article  CAS  PubMed  Google Scholar 

  46. J. DeChancie, K. N. Houk, J. Am. Chem. Soc., 2007, 129, 5419; DOI: https://doi.org/10.1021/ja066950n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. F. Abyar, I. Novak, J. Phys. Chem. A, 2018, 122, 2079; DOI: https://doi.org/10.1021/acs.jpca.7b12631.

    Article  CAS  PubMed  Google Scholar 

  48. A. Jezierska, J. J. Panek, J. Mol. Model., 2019, 25, Art. 361; DOI: https://doi.org/10.1007/s00894-019-4253-7.

  49. L. A. Leites, Chem. Rev., 1992, 92, 279; DOI: https://doi.org/10.1021/cr00010a006.

    Article  CAS  Google Scholar 

  50. L. I. Zakhrakin, V. N. Kalinin, V. V. Gedymin, J. Organomet. Chem., 1969, 16, 371; DOI: https://doi.org/10.1016/S0022-328X(00)89762-4.

    Article  Google Scholar 

  51. L. I. Zakharkin, V. A. Ol’shevskaya, D. D. Sulaiman-kulova, V. A. Antonovich, Russ. Chem. Bull., 1991, 40, 1026; DOI: https://doi.org/10.1007/BF00961367.

    Article  Google Scholar 

  52. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 7th ed., Butterworth-Heinemann, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gruzdev.

Ethics declarations

The authors declare no competing interests.

Additional information

This study was financially supported by the Russian Science Foundation (Project No. 21-73-10073). The work was performed using research equipment of the Center for Joint Use “Spectroscopy and Analysis of Organic Compounds” at the I. Ya. Postovsky Institute of Organic Synthesis of the Russian Academy of Sciences (Ural Branch) (Ekaterinburg).

No human or animal subjects were used in this research.

Based on the materials of the VI International Scientific and Practical Conference “Modern Synthetic Strategies for Creating Drugs and Functional Materials” (MOSM 2022) (November 7–11, 2022, Ekaterinburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 8, pp. 1861–1867, August, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telegina, A.A., Gruzdev, D.A., Chulakov, E.N. et al. Synthesis of novel biotin-based carborane amides. Russ Chem Bull 72, 1861–1867 (2023). https://doi.org/10.1007/s11172-023-3970-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3970-3

Key words

Navigation