Skip to main content
Log in

Intramolecular reductive Heck reaction in the synthesis of 3,3-disubstituted isoindolin-1-ones

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

An efficient approach to the synthesis of 3,3-disubstituted isoindolinones by intramolecular cyclization of enamides in the presence of the Pd(OAc)2/Ph3P catalytic system and sodium formate as a reducing agent was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Y. A. Kvashnin, E. V. Verbitskiy, G. L. Rusinov, V. N. Charushin, Russ. Chem. Bull., 2022, 71, 1342; DOI: https://doi.org/10.1007/s11172-022-3540-0.

    Article  CAS  Google Scholar 

  2. A. V. Smolobochkin, A. S. Gazizov, A. R. Garifzyanov, A. R. Burilov, M. A. Pudovik, Russ. Chem. Bull., 2022, 71, 878; DOI: https://doi.org/10.1007/s11172-022-3487-1.

    Article  CAS  Google Scholar 

  3. M. S. Kobzev, A. A. Titov, A. V. Varlamov, Russ. Chem. Bull., 2021, 70, 1213; DOI: https://doi.org/10.1007/s11172-021-3208-1.

    Article  CAS  Google Scholar 

  4. A. B. Koldobskii, O. S. Shilova, S. A. Glazun, I. V. Sandulenko, Russ. Chem. Bull., 2022, 71, 2224; DOI: https://doi.org/10.1007/s11172-022-3649-1.

    Article  CAS  Google Scholar 

  5. I. A. Novakov, D. S. Sheikin, E. A. Ruchko, L. L. Brunilina, A. A. Vernigora, N. A. Salykin, O. V. Vostrikova, V. V. Chapurkin, M. B. Nawrozkij, D. V. Kurkin, D. A. Bakulin, M. Yu. Vorontsov, L. A. Sablina, N. S. Kovalev, I. N. Tyurenkov, Russ. Chem. Bull., 2021, 70, 2220; DOI: https://doi.org/10.1007/s11172-021-3336-7.

    Article  CAS  Google Scholar 

  6. K. Speck, T. Magauer, Beilstein J. Org. Chem., 2013, 9, 2048; DOI: https://doi.org/10.3762/bjoc.9.243.

    Article  PubMed  PubMed Central  Google Scholar 

  7. S. P. Upadhyay, P. Thapa, R. Sharma, M. Sharma, Fitoterapia, 2020, 146, 104722; DOI: https://doi.org/10.1016/j.fitote.2020.104722.

    Article  CAS  PubMed  Google Scholar 

  8. H. Kamauchi, Y. Shiraishi, A. Kojima, N. Kawazoe, K. Kinoshita, K. Koyama, J. Nat. Prod., 2018, 81, 1290; DOI: https://doi.org/10.1021/acs.jnatprod.7b00976.

    Article  CAS  PubMed  Google Scholar 

  9. K. Scherlach, J. Schuemann, H.-M. Dahse, C. Hertweck, J. Antibiot., 2010, 63, 375; DOI: https://doi.org/10.1038/ja.2010.46.

    Article  CAS  Google Scholar 

  10. K. Thakur, G. Singh, Eur. J. Mol. Clin. Med., 2020, 7, 3658; https://ejmcm.com/article_5207.html.

    Google Scholar 

  11. R.K. Bhatia, Curr. Top. Med. Chem., 2017, 17, 189; DOI: https://doi.org/10.2174/1568026616666160530154100.

    Article  CAS  PubMed  Google Scholar 

  12. M. L. Peach, S. L. Beedie, C. H. Chau, M. K. Collins, S. Markolovic, W. Luo, D. Tweedie, C. Steinebach, N. H. Greig, M. Gütschow, N. Vargesson, M. C. Nicklaus, W.D. Figg, Molecules, 2020, 25, 5683; DOI: https://doi.org/10.3390/molecules25235683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. A. Davies, xPharm: The Comprehensive Pharmacology Reference, Eds S. J. Enna, D. B. Bylund, 2009, pp. 1–6; DOI: https://doi.org/10.1016/B978-008055232-3.63919-4.

  14. S. Chiba, T. Nishiyama, Y. Yamada, Anesth. Analg., 2009, 108, 1008; DOI: https://doi.org/10.1213/ane.0b013e318193678f.

    Article  CAS  PubMed  Google Scholar 

  15. D. Hamprecht, F. Micheli, G. Tedesco, A. Checchia, D. Donati, M. Petrone, S. Terrenia, M. Wood, Bioorg. Med. Chem. Lett., 2007, 17, 428; DOI: https://doi.org/10.1016/j.bmcl.2006.10.029.

    Article  CAS  PubMed  Google Scholar 

  16. X. Chen, S. Zhao, H. Li, X. Wang, A. Geng, H. Cui, T. Lu, Y. Chen, Y. Zhu, Eur. J. Med. Chem., 2019, 168, 110; DOI: https://doi.org/10.1016/j.ejmech.2019.02.032.

    Article  CAS  PubMed  Google Scholar 

  17. X. Z. Zhao, K. Maddali, C. Marchand, Y. Pommier, T. R. Burke, Jr., Bioorg. Med. Chem., 2009, 17, 5318; DOI: https://doi.org/10.1016/j.bmc.2009.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T. R. Belliotti, W. A. Brink, S. R. Kesten, J. R. Rubin, D. J. Wustrow, K. T. Zoski, S. Z. Whetzel, A. E. Corbin, T. A. Pugsley, T. G. Heffner, L. D. Wise, Bioorg. Med. Chem. Lett., 1998, 8, 1499; DOI: https://doi.org/10.1016/s0960-894x(98)00252-2.

    Article  CAS  PubMed  Google Scholar 

  19. S.-H. Zhang, C.-Y. Wang, Z.-Z. Jiang, P.-Z. Ni, J.-P. Zhou, B.-M. Xi, W.-H. Chen, Chem. Pharm. Bull., 2011, 59, 96; DOI: https://doi.org/10.1248/cpb.59.96.

    Article  CAS  Google Scholar 

  20. W.-K. Xu, J.-M. Guo, Z.-D. Chen, C.-M. Si, B.-G. Wei, Eur. J. Org. Chem., 2021, 18, 2625; DOI: https://doi.org/10.1002/ejoc.202100368.

    Article  Google Scholar 

  21. A. Ali, A. Bera, M.R. Molla, S. Samanta, ChemistrySelect, 2021, 6, 5603; DOI: https://doi.org/10.1002/slct.202101259.

    Article  Google Scholar 

  22. A. Di Mola, G. Nicastro, L. Serusi, R. Filosa, M. Waser, A. Massa, Molecules, 2022, 27, 5647; DOI: https://doi.org/10.3390/molecules27175647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. W. Guo, Q. Zhang, Y. Cao, K. Cai, S. Zhang, Y. Chai, Green Chemistry, 2020, 22, 2873; DOI: https://doi.org/10.1039/D0GC00957A.

    Article  CAS  Google Scholar 

  24. J. Li, Y. Li, Z. Wang, Y. Bian, S. Bai, L. Liu, J. Sun, J. Org. Chem., 2018, 83, 4257; DOI: https://doi.org/10.1021/acs.joc.8b00283.

    Article  CAS  PubMed  Google Scholar 

  25. Y. Xu, X.-Y. Liu, Z.-H. Wang, L.-F. Tang, Tetrahedron, 2017, 73, 7245; DOI: https://doi.org/10.1016/j.tet.2017.11.001.

    Article  CAS  Google Scholar 

  26. W. Gao, M. Chen, Q. Ding, Y. Peng, Chem. Asian J., 2019, 14, 1306; DOI: https://doi.org/10.1002/asia.201900080.

    Article  CAS  PubMed  Google Scholar 

  27. X.-H. Li, J.-F. Gong, M.-P. Song, Org. Biomol. Chem., 2021, 19, 5876; DOI: https://doi.org/10.1039/D1OB00656H.

    Article  CAS  PubMed  Google Scholar 

  28. L. Liu, S.-H. Bai, Y. Li, X.-D. Ding, Q. Liu, J. Li, Adv. Synth. Catal., 2018, 360, 1617; DOI: https://doi.org/10.1002/adsc.201701580.

    Article  CAS  Google Scholar 

  29. C. Reddy, S.A. Babu, R. Padmavathi, ChemistrySelect, 2016, 1, 2952; DOI: https://doi.org/10.1002/slct.201600411.

    Article  CAS  Google Scholar 

  30. P. Barrio, I. Ibáñez, L. Herrera, R. Román, S. Catalán, S. Fustero, Chem. Eur. J., 2015, 21, 11579; DOI: https://doi.org/10.1002/chem.201500773.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Suzuki, M. Kanai, S. Matsunaga, Chem. Eur. J., 2012, 18, 7654; DOI: https://doi.org/10.1002/chem.201200821.

    Article  CAS  PubMed  Google Scholar 

  32. L. J. Oxtoby, J. A. Gurak, Jr., S. R. Wisniewski, M. D. Eastgate, K. M. Engle, Trends Chem., 2019, 1, 572; DOI: https://doi.org/10.1016/j.trechm.2019.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Y. Xiaomei, M. Sha, D. Yanni, T. Yunhai, Chin. J. Org. Chem., 2013, 33, 2325; DOI: https://doi.org/10.6023/cjoc201303053.

    Article  Google Scholar 

  34. T. Ghosh, ChemistrySelect, 2019, 4, 4747; DOI: https://doi.org/10.1002/slct.201804029.

    Article  CAS  Google Scholar 

  35. A. N. Reznikov, M. A. Ashatkina, Yu. N. Klimochkin, Org. Biomol. Chem., 2021, 19, 5673; DOI: https://doi.org/10.1039/D1OB00496D.

    Article  CAS  PubMed  Google Scholar 

  36. W. Kong, Q. Wang, J. Zhu, Angew. Chem., Int. Ed., 2017, 56, 3987; DOI: https://doi.org/10.1002/anie.201700195.

    Article  CAS  Google Scholar 

  37. Z.-M. Zhang, B. Xu, Y. Qian, L. Wu, Y. Wu, L. Zhou, Y. Liu, J. Zhang, Angew. Chem., Int. Ed., 2018, 57, 10373; DOI: https://doi.org/10.1002/anie.201806372.

    Article  CAS  Google Scholar 

  38. G. Yue, K. Lei, H. Hirao, J. Zhou, Angew. Chem., Int. Ed., 2015, 54, 6531; DOI: https://doi.org/10.1002/anie.201501712.

    Article  CAS  Google Scholar 

  39. M. A. Ashatkina, A. N. Reznikov, Yu. N. Klimochkin, Russ. J. Org. Chem., 2022, 58, 710; DOI: https://doi.org/10.1134/S1070428022050116.

    Article  CAS  Google Scholar 

  40. R.-X. Liang, R.-Z. Yang, R.-R. Liu, Y.-X. Jia, Org. Chem. Front., 2018, 5, 1840; DOI: https://doi.org/10.1039/C8QO00205C.

    Article  CAS  Google Scholar 

  41. B. Burns, R. Grigg, P. Ratananukul, V. Sridharan, P. Stevenson, T. Worakun, Tetrahedron Lett., 1988, 29, 4329; DOI: https://doi.org/10.1016/S0040-4039(00)80489-X.

    Article  CAS  Google Scholar 

  42. T. Jeffery, J. Chem. Soc. Chem. Commun., 1984, 19, 1287; DOI: https://doi.org/10.1039/C39840001287.

    Article  Google Scholar 

  43. T. Jeffery, Tetrahedron, 1996, 52, 10113; DOI: https://doi.org/10.1016/0040-4020(96)00547-9.

    Article  CAS  Google Scholar 

  44. P. Liu, L. Huang, Y. Lu, M. Dilmeghani, J. Baum, T. Xiang, J. Adams, A. Tasker, R. Larsen, M. M. Faul, Tetrahedron Lett., 2007, 48, 2307; DOI: https://doi.org/10.1016/j.tetlet.2007.01.156.

    Article  CAS  Google Scholar 

  45. D. R. Vargas, S. P. Cook, Tetrahedron, 2018, 74, 3314; DOI: https://doi.org/10.1016/j.tet.2018.04.052.

    Article  Google Scholar 

  46. G. Dilauro, L. Cicco, P. Vitale, F. M. Perna, V. Capriati, Eur. J. Org. Chem., 2023, 26, e202200814; DOI: https://doi.org/10.1002/ejoc.202200814.

    Article  CAS  Google Scholar 

  47. K. Kobayashi, D. Fujiwara, K. Nozaki, T. Nogi, Heterocycles, 2018, 96, 1610; DOI: https://doi.org/10.3987/COM-18-13946.

    Article  CAS  Google Scholar 

  48. S. H. Sinha, E. A. Owens, Y. Feng, Y. Yang, Y. Xie, Y. Tu, M. Henary, Y. G. Zheng, Eur. J. Med. Chem., 2012, 54, 647; DOI: https://doi.org/10.1016/j.ejmech.2012.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. P. Schnider, G. Koch, R. Prétôt, G. Wang, F. M. Bohnen, C. Krüger, A. Pfaltz, Chem. Eur. J., 1997, 3, 887; DOI: https://doi.org/10.1002/chem.19970030609.

    Article  CAS  Google Scholar 

  50. F. Chen, T. Wang, Y. He, Z. Ding, Z. Li, L. Xu, Q. H. Fan, Chem. Eur. J., 2011, 17, 1109; DOI: https://doi.org/10.1002/chem.201002846.

    Article  CAS  PubMed  Google Scholar 

  51. I. A. Bidusenko, E. Y. Schmidt, N. I. Protsuk, I. A. Ushakov, A. V. Vashchenko, A. V. Afonin, B. A. Trofimov, Org. Lett., 2020, 22, 2611; DOI: https://doi.org/10.1021/acs.orglett.0c00564.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Reznikov.

Ethics declarations

The authors declare no competing interests.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 21-73-20096). Spectral studies of the synthesized compounds were performed with the financial support from the Ministry of Science and Higher Education of the Russian Federation in the framework of the basic part of the State Task (No. FSSE-2023-0003).

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 8, pp. 1809–1814, August, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashatkina, M.A., Reznikov, A.N., Vostrukhina, S.Y. et al. Intramolecular reductive Heck reaction in the synthesis of 3,3-disubstituted isoindolin-1-ones. Russ Chem Bull 72, 1809–1814 (2023). https://doi.org/10.1007/s11172-023-3963-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3963-2

Kew words

Navigation