Skip to main content
Log in

Evaluation of the effect of iminium intermediates on the stereoselectivity of the Biginelli reaction involving hydroxyproline-containing podands

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The results are presented of a theoretical study on assessment of the stereoselectivity of processes aimed at increasing the enantiomeric excess of chiral pyrimidinones, products of the Biginelli reaction. The effects of hydroxyproline-containing podands used as chiral inductors, viz., the influence of the base or salt forms and of the oxyethylene chain length in the stage of formation of iminium intermediates of the Biginelli reaction are considered. A methodology is proposed for modeling a multicomponent reaction mixture by the molecular dynamics method. The strategy proved itself in quantitative assessment of the stereoselectivity of the approach of urea molecule to the iminium stereoisomers under the conditions of a simulated diffusion stage of the reaction. The energy maps constructed in the polar coordinates make it possible to visually assess the preference of the reagent approach to the different diastereotopic sides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. S. Kobzev, A. A. Titov, A. V. Varlamov, Russ. Chem. Bull., 2021, 70, 1213; DOI: https://doi.org/10.1007/s11172-021-3208-1.

    Article  CAS  Google Scholar 

  2. G.-J. Cheng, X. Zhang, L. W. Chung, L. Xu, Y.-D. Wu, J. Am. Chem. Soc., 2015, 137, 1706; DOI: https://doi.org/10.1021/ja5112749.

    Article  CAS  PubMed  Google Scholar 

  3. M. S. Taylor, E. N. Jacobsen, Angew. Chem., Int. Ed., 2006, 45, 1520; DOI: https://doi.org/10.1002/anie.200503132.

    Article  CAS  Google Scholar 

  4. S. V. Kochetkov, A. S. Kucherenko, G. V. Kryshtal, G. M. Zhdankina, S. G. Zlotin, Eur. J. Org. Chem., 2012, 2012, 7129; DOI: https://doi.org/10.1002/ejoc.201201144.

    Article  CAS  Google Scholar 

  5. R. Kuhn’, F. Erni, Anal. Chem., 1992, 64, 2815; DOI: https://doi.org/10.1021/ac00046a026.

    Article  Google Scholar 

  6. H. Nagata, H. Nishi, M. Kamigauchi, T. Ishida, Chirality, 2008, 20, 8203827; DOI: https://doi.org/10.1002/chir.20550.

    Article  Google Scholar 

  7. Z.-Y. Li, H.-X. Tong, Y. Chen, H.-K. Su, T. Xiao, X.-Q. Sun, L. Wang, J. Org. Chem., 2018, 14, 1901; DOI: https://doi.org/10.3762/bjoc.14.164.

    Google Scholar 

  8. P. J. Loida, S. G. Sligar, M. D. Paulsen, G. E. Arnold, R. L. Ornstein, J. Biol. Chem., 1995, 270, 5326; DOI: https://doi.org/10.1074/jbc.270.10.5326.

    Article  CAS  PubMed  Google Scholar 

  9. D. Teng, Y. Zhou, Y. Tang, G. Liu, Y. Tu, J. Chem. Inf. Model., 2022, 62, 3664; DOI: https://doi.org/10.1021/acs.jcim.2c00417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Weiß, M. Brehm, Molecules, 2020, 25, 5861; DOI: https://doi.org/10.3390/molecules25245861.

    Article  PubMed  PubMed Central  Google Scholar 

  11. X. Wu, Z. Li, J. Lin, Z. Huang, F. Chen, ChemCatChem, 2022, 14, e202101970; DOI: https://doi.org/10.1002/cctc.202101970.

    Article  CAS  Google Scholar 

  12. Y. Wu, J. Zhou, J. Ni, C. Zhu, Z. Sun, G. Xu, Y. Ni, ASC, 2022, 364, 332; DOI: https://doi.org/10.1002/adsc.202001313.

  13. S. A. Serapian, M. W. van der Kamp, ACS Catalysis, 2019, 9, 2381; DOI: https://doi.org/10.1021/acscatal.8b04846.

    Article  CAS  Google Scholar 

  14. G. Rastelli, A. D. Rio, G. Degliesposti, M. Sgobba, J. Comput. Chem., 2010, 31, 797; DOI: https://doi.org/10.1002/jcc.21372.

    CAS  PubMed  Google Scholar 

  15. A. Warshel, M. Levitt, J. Mol. Biol., 1976, 103, 227; DOI: https://doi.org/10.1016/0022-2836(76)90311-9.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Fu, L. Bernasconi, P. Liu, J. Am. Chem. Soc., 2021, 143, 1577; DOI: https://doi.org/10.1021/jacs.0c12096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Luo, L. Liu, C. J. Lyu, B. Sim, Y. Liu, H. Gong, Y. Nie, Y. L. Zhao, Cell Rep. Phys. Sci., 2022, 3, 101128; DOI: https://doi.org/10.1016/j.xcrp.2022.101128.

    Article  CAS  Google Scholar 

  18. Â. de Fátima, B. S. Terra, L. da Silva Neto, T. C. Braga, in Green Synthetic Approaches for Biologically Relevant Heterocycles, Ed. G. Brahmachari, Elsevier, 2015, p. 317; DOI: https://doi.org/10.1016/B978-0-12-800070-0.00008-6.

  19. E. S. Filatova, O. V. Fedorova, I. G. Ovchinnikova, K. A. Chistyakov, G. L. Rusinov, V. N. Charushin, Russ. Chem. Bull., 2022, 71, 1506; DOI: https://doi.org/10.1007/s11172-022-3557-4.

    Article  CAS  Google Scholar 

  20. Â. de Fátima, T. C. Braga, L. D. S. Neto, B. S. Terra, B. G. Oliveira, D. L. da Silva, L. V. Modolo, J. Adv. Res., 2015, 6, 363; DOI: https://doi.org/10.1016/j.jare.2014.10.006.

    Article  PubMed  Google Scholar 

  21. O. V. Fedorova, Y. A. Titova, I. G. Ovchinnikova, G. L. Rusinov, V. N. Charushin, Mendeleev Commun., 2018, 28, 357; DOI: https://doi.org/10.1016/j.mencom.2018.07.004.

    Article  CAS  Google Scholar 

  22. O. S. Borodina, G. I. Makarov, E. V. Bartashevich, I. G. Ovchinnikova, Y. A. Titova, O. V. Fedorova, G. L. Rusinov, V. N. Charushin, Chem. Heterocycl. Comp., 2019, 55, 755; DOI: https://doi.org/10.1007/s10593-019-02531-4.

    Article  CAS  Google Scholar 

  23. O. Borodina, I. Ovchinnikova, G. Makarov, O. Yeltsov, Y. Titova, O. Fedorova, A. E. Masunov, E. Bartashevich, J. Phys. Chem. A, 2021, 125, 6029; DOI: https://doi.org/10.1021/acs.jpca.1c02613.

    Article  CAS  PubMed  Google Scholar 

  24. O. Borodina, I. Ovchinnikova, O. Fedorova, G. Makarov, E. Bartashevich, Comput. Theor. Chem., 2022, 1217, 113885; DOI: https://doi.org/10.1016/j.comptc.2022.113885.

    Article  CAS  Google Scholar 

  25. R. O. De Souza, E. T. da Penha, H. M. Milagre, S. J. Garden, P. M. Esteves, M. N. Eberlin, O. A. Antunes, Chem. Eur. J., 2009, 15, 9799; DOI: https://doi.org/10.1002/chem.200900470.

    Article  CAS  PubMed  Google Scholar 

  26. V. C. Lakha, N. Pragnesh, ChemistrySelect, 2020, 5, 5552; DOI: https://doi.org/10.1002/slct.202000742.

    Article  Google Scholar 

  27. J. S. Yadav, S. P. Kumar, G. Kondaji, R. S. Rao, K. Nagaiah, Chem. Lett., 2004, 33, 1168; DOI: https://doi.org/10.1246/cl.2004.1168.

    Article  CAS  Google Scholar 

  28. J. Wang, R. M. Wolf, J. W. Caldwell, J. Comput. Chem., 2004, 9, 1157; DOI: https://doi.org/10.1002/jcc.20035.

    Article  Google Scholar 

  29. G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, Comput. Phys. Commun., 2014, 185, 604; DOI: https://doi.org/10.1016/j.cpc.2013.09.018.

    Article  CAS  Google Scholar 

  30. C. I. Bayly, P. Cieplak, W. Cornell, P. A. Kollman, J. Phys. Chem., 1993, 97, 10269; DOI: https://doi.org/10.1021/j100142a004.

    Article  CAS  Google Scholar 

  31. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. Berendsen, J. Comput. Chem., 2005, 26, 1701; DOI: https://doi.org/10.1002/jcc.20291.

    Article  CAS  PubMed  Google Scholar 

  32. M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietruccig, R. A. Broglia, M. Parrinello, Comput. Phys. Commun., 2009, 180, 1961; DOI: https://doi.org/10.1016/j.cpc.2009.05.011.

    Article  CAS  Google Scholar 

  33. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys., 2007, 1, 014101; DOI: https://doi.org/10.1063/1.2408420.

    Article  Google Scholar 

  34. H. J. Berendsen, J. V. Postma, W. F. Van Gunsteren, A. R. H. J. DiNola, J. R. Haak, J. Chem. Phys., 1984, 81, 3684; DOI: https://doi.org/10.1063/1.448118.

    Article  CAS  Google Scholar 

  35. X. Daura, K. Gademann, B. Jaun, D. Seebach, W. F. Van Gunsteren, A. E. Mark, Angew. Chem., Int. Ed., 1999, 38, 236; DOI: https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M.

    Article  CAS  Google Scholar 

  36. T. Darden, D. York, L. Pedersen, J. Chem. Phys., 1993, 98, 10089; DOI: https://doi.org/10.1063/1.464397.

    Article  CAS  Google Scholar 

  37. B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, J. Comp. Chem., 1997, 18, 1463; DOI: https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.

    Article  CAS  Google Scholar 

  38. C. Domene, P. Barbini, S. Furini, J. Chem. Theory Comput., 2015, 4, 1896; DOI: https://doi.org/10.1021/ct501053x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Borodina.

Ethics declarations

The authors declare no competing interests.

Additional information

This work was carried out using the equipment of the “Spectroscopy and Analysis of Organic Compounds” Center for Joint Use at the I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Contract No. 075-15-2020-777) and within the framework of the State Assignment No. FUWM-2024-0009.

No human or animal subjects were used in this research.

Based on the materials of the VI International Conference “Modern Synthetic Methodologies for Creating Drugs and Functional Materials” (MOSM 2022) (November 7–11, 2022, Ekaterinburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 8, pp. 1767–1780, August, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodina, O.S., Bartashevich, E.V., Ovchinnikova, I.G. et al. Evaluation of the effect of iminium intermediates on the stereoselectivity of the Biginelli reaction involving hydroxyproline-containing podands. Russ Chem Bull 72, 1767–1780 (2023). https://doi.org/10.1007/s11172-023-3959-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3959-y

Key words

Navigation