Skip to main content

Advertisement

Log in

Ferrocene-containing derivatives of sydnones and sydnone imines. Growth-regulating properties and antidote activity

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

First representatives of ferrocenyl-containing mesoionic heterocyclic compounds were synthesized by the reaction of 4-lithium derivatives of sydnones and sydnone imines with ferrocenecarboxaldehyde. A series of 4-(α-hydroxy)- and 4-(α-methoxy)ferrocenyl-methyl derivatives of sydnones and sydnone imines, which were found in vegetation tests using seeds of corn cv. Krasnodarskaya 291 AMB, exhibit growth-regulating and antidote activity against the herbicide metsulfuron-methyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. K. Bhosalea, Sh. R. Deshpandeb, R. D. Waghc, A. S. Dhakea, J. Chem. Pharm. Res., 2015, 7, 1247.

    Google Scholar 

  2. V. G. Yashunskii, L. E. Kholodov, Russ. Chem. Rev., 1980, 49, 28; DOI: https://doi.org/10.1070/rc1980v049n01abeh002443.

    Article  Google Scholar 

  3. I. A. Cherepanov, S. K. Moiseev, Adv. Heterocycl. Chem., 2020, 131, 49; DOI: https://doi.org/10.1016/bs.aihch.2019.11.003.

    Article  CAS  Google Scholar 

  4. V. G. Granik, S. Yu. Ryabova, N. B. Grigoriev, Russ. Chem. Rev., 1997, 66, 717; DOI: https://doi.org/10.1070/RC1997v066n08ABEH000317.

    Article  Google Scholar 

  5. T. Rőszer, The Biology of Subcellular Nitric Oxide, Dordrecht, Heidelberg, London, New York, Springer, 2012, 209 pp.; DOI: https://doi.org/10.1007/978-94-007-2819-6.

    Book  Google Scholar 

  6. L. B. Kier, E. B. Roche, J. Pharm. Sci., 1967, 56, 149; DOI: https://doi.org/10.1002/jps.2600560202.

    Article  CAS  PubMed  Google Scholar 

  7. M. Kawase, H. Sakagami, N. Motohashi, Bioactive Heterocycles VII, 2007, 135; DOI: https://doi.org/10.1007/7081_2007_096.

  8. L. F. Galuppo, F. A. dos Reis Lívero, G. G. Martins, C. C. Cardoso, O. C. Beltrame, L. M. Bacaro Klassen, A. V. dos Santos Canuto, A. Echevarria, J. E. Queiroz Telles, G. Klassen, A. Acco, Basic Clin. Pharmacol. Toxicol., 2016, 119, 41; DOI: https://doi.org/10.1111/bcpt.12545.

    Article  CAS  PubMed  Google Scholar 

  9. C. S. Dunkley, J. T. Charles, Bioorg. Med. Chem. Lett., 2003, 13, 2899; DOI: https://doi.org/10.1016/S0960-894X(03)00487-6.

    Article  CAS  PubMed  Google Scholar 

  10. T. Taj, R. R. Kamble, T. M. Gireesh, R. K. Hunnur, J. Serb. Chem. Soc., 2011, 76, 1069; DOI: https://doi.org/10.2298/JSC100708085T.

    Article  CAS  Google Scholar 

  11. E. Yu. Khmel’nitskaya, V. I. Levina, L. A. Trukhacheva, N. B. Grigoriev, V. N. Kalinin, I. A. Cherepanov, S. N. Lebedev, V. G. Granik, Russ. Chem. Bull., 2004, 53, 2840; DOI: https://doi.org/10.1007/s11172-005-0199-2.

    Article  Google Scholar 

  12. L. L. Fershtat, E. S. Zhilin, Molecules, 2021, 26, 5705; DOI: https://doi.org/10.3390/molecules26185705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai, A. J. Janczuk, Chem. Rev., 2002, 102, 1091; DOI: https://doi.org/10.1021/cr0000401.

    Article  CAS  PubMed  Google Scholar 

  14. K. Szőke, A. Czompa, I. Lekli, P. Szabados-Fürjesi, M. Herczeg, M. Csávás, A. Borbásc, P. Herczegh, Á. Tósaki, Eur. J. Pharm. Sci., 2019, 131, 159; DOI: https://doi.org/10.1016/j.ejps.2019.02.020.

    Article  PubMed  Google Scholar 

  15. K. Rehse, K.-J. Schleifer, T. Ciborski, H. Bohn, Arch. der Pharm., 1993, 326, 791; DOI: https://doi.org/10.1002/ardp.19933261005.

    Article  CAS  Google Scholar 

  16. S. Dua, X. Hub, X. Shao, X. Qian, Bioorg. Med. Chem. Lett., 2021, 44, 128114; DOI: https://doi.org/10.1016/j.bmcl.2021.128114.

    Article  Google Scholar 

  17. P. R. Latthe, P. S. Shinge, Bharati V. Badami, P. B. Patil, S. N. Holihosur, J. Chem. Sci., 2006, 118, 249; DOI: https://doi.org/10.1007/BF02708284.

    Article  CAS  Google Scholar 

  18. D. Zhang, J. Zhang, T. Liu, S. Wu, Z. Wu, S. Wu, R. Song, B. Song, J. Agric. Food. Chem., 2022, 70, 8598; DOI: https://doi.org/10.1021/acs.jafc.2c01899.

    Article  CAS  PubMed  Google Scholar 

  19. V. A. Ol’shevskaya, I. A. Cherepanov, Yu. Ya. Spiridonov, G. S. Spiridonova, A. V. Makarenkov, A. S. Samarskaya, S. K. Moiseev, Agrokhimiya [Agricultural Chemistry], 2017, 4, 16 (in Russian).

    Google Scholar 

  20. I. A. Cherepanov, Yu. Ya. Spiridonov, O. A. Chichvarina, A. S. Samarskaya, A. B. Ponomarev, S. K. Moiseev, Agrokhimiya [Agricultural Chemistry], 2018, 9, 50 (in Russian); DOI: https://doi.org/10.1134/S0002188118090053.

    Google Scholar 

  21. I. A. Cherepanov, E. V. Shevaldina, D. A. Lapshin, Yu. Ya. Spiridonov, V. A. Abubikerov, S. K. Moiseev, J. Organomet. Chem., 2021, 943, 121841; DOI: https://doi.org/10.1016/j.jorganchem.2021.121841.

    Article  CAS  Google Scholar 

  22. I. A. Cherepanov, Yu. Ya. Spiridonov, V. A. Abubikerov, I. Yu. Spiridonova, N. V. Kalganova, D. A. Lapshin, S. K. Moiseev, Agrokhimiya [Agricultural Chemistry], 2022, 4, 36 (in Russian); DOI: https://doi.org/10.31857/S0002188122040056.

    Google Scholar 

  23. B. Floris, Chem. Biologic. Technol. Agricul., 2015, 2, 1; DOI: https://doi.org/10.1186/s40538-015-0038-0.

    Article  Google Scholar 

  24. A. Singh, I. Lumb, V. Mehra, V. Kumar, Dalton Trans., 2019, 48, 2840; DOI: https://doi.org/10.1039/C8DT03440K.

    Article  CAS  PubMed  Google Scholar 

  25. D. R. van Staveren, N. Metzler-Nolte, Chem. Rev., 2004, 104, 5931; DOI: https://doi.org/10.1021/cr0101510.

    Article  CAS  PubMed  Google Scholar 

  26. C. Ornelas, New J. Chem., 2011, 35, 1973; DOI: https://doi.org/10.1039/C1NJ20172G.

    Article  CAS  Google Scholar 

  27. L. V. Snegur, A. A. Simenel, A. N. Rodionov, V. I. Boev, Russ. Chem. Bull., 2014, 63, 26; DOI: https://doi.org/10.1007/s11172-014-0390-4https://doi.org/10.1007/s11172-014-0390-4.

    Article  CAS  Google Scholar 

  28. I. A. Cherepanov, N. V. Egorova, K. B. Martinovich, V. N. Kalinin, Dokl. Chem., 2000, 374, 175.

    Google Scholar 

  29. I. A. Cherepanov, V. N. Kalinin, Mendeleev Commun., 2000, 10, 181; DOI: https://doi.org/10.1070/mc2000v010n05abeh001319.

    Article  Google Scholar 

  30. A. S. Samarskaya, I. A. Cherepanov, I. A. Godovikov, A. O. Dmitrienko, S. K. Moiseev, V. N. Kalinin, E. Hey-Hawkins, Tetrahedron, 2018, 74, 2693; DOI: https://doi.org/10.1016/j.tet.2018.04.015.

    Article  CAS  Google Scholar 

  31. V. N. Kalinin, S. N. Lebedev, I. A. Cherepanov, I. A. Godovikov, K. A. Lyssenko, E. Hey-Hawkins, Polyhedron, 2009, 28, 2411; DOI: https://doi.org/10.1016/j.poly.2009.04.038.

    Article  CAS  Google Scholar 

  32. I. A. Cherepanov, E. D. Savin, N. G. Frolova, M. O. Shishkova, I. A. Godovikov, K. Y. Suponitsky, V. N. Kalinin, Mendeleev Commun., 2009, 19, 320; DOI: https://doi.org/10.1016/j.mencom.2009.11.008.

    Article  CAS  Google Scholar 

  33. I. A. Cherepanov, L. H. Kusaeva, I. A. Godovikov, V. N. Kalinin, Russ. Chem. Bull., 2009, 58, 2474; DOI: https://doi.org/10.1007/s11172-009-0346-2.

    Article  CAS  Google Scholar 

  34. I. A. Cherepanov, S. N. Lebedev, A. S. Samarskaya, I. A. Godovikov, Y. V. Nelyubina, V. N. Kalinin, Mendeleev Commun., 2009, 19, 322; DOI: https://doi.org/10.1016/j.mencom.2009.11.009.

    Article  CAS  Google Scholar 

  35. I. A. Cherepanov, A. S. Samarskaya, R. G. Nosov, I. A. Godovikov, Y. V. Nelyubina, V. N. Kalinin, Mendeleev Commun., 2014, 24, 386; DOI: https://doi.org/10.1016/j.mencom.2014.11.027.

    Article  CAS  Google Scholar 

  36. E. S. Trankina, N. G. Frolova, I. A. Godovikov, I. A. Cherepanov, INEOS OPEN, 2020, 3, 35; DOI: https://doi.org/10.32931/io2005a.

    Article  CAS  Google Scholar 

  37. I. A. Cherepanov, E. S. Trankina, N. G. Frolova, Russ. Chem. Bull., 2020, 69, 182; DOI: https://doi.org/10.1007/s11172-020-2743-5.

    Article  CAS  Google Scholar 

  38. H. U. Daeniker, J. Druey, Helv. Chim. Acta, 1962, 45, 2426; DOI: https://doi.org/10.1002/hlca.19620450713.

    Article  CAS  Google Scholar 

  39. K. Masuda, T. Kamiya, Y. Imashiro, T. Kaneko, Chem. Pharm. Bull., 1971, 19, 72; DOI: https://doi.org/10.1248/cpb.19.72.

    Article  CAS  Google Scholar 

  40. S. R. Colby, Weeds, 1967, 15, 20, DOI: https://doi.org/10.2307/4041058.

    Article  CAS  Google Scholar 

  41. G. M. Sheldrick, Acta Cryst. A., 2008, 64, 112; DOI: https://doi.org/10.1107/S0108767307043930.

    Article  CAS  Google Scholar 

  42. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009. 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Cherepanov.

Additional information

The study was financially supported by the Russian Science Foundation (Project No. 22-23-00726, https://rscf.ru/project/22-23-00726/).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 7, pp. 1688–1700, July, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalganova, N.V., Smolyakov, A.F., Moiseev, S.K. et al. Ferrocene-containing derivatives of sydnones and sydnone imines. Growth-regulating properties and antidote activity. Russ Chem Bull 72, 1688–1700 (2023). https://doi.org/10.1007/s11172-023-3949-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3949-0

Key words

Navigation