Skip to main content
Log in

Effect of nitrosyl iron complexes and their thio ligands on the activity of phosphodiesterase and sarcoplasmic reticulum Ca2+-ATPase

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The effect of certain NO donors, viz., nitrosyl iron complexes (NICs) and their functional thio ligands, on the activity of hydrolytic enzymes was studied taking cyclic guanosine monophosphate phosphodiesterase (cGMP PDE) and sarcoplasmic reticulum (SR) Ca2+-ATPase as examples. It was shown that mononuclear dinitrosyl complexes with 4-nitrophenyl- and 5-nitropyridin-2-ylthiols as well as the binuclear tetranitrosyl complex with 3-hydroxyphenylthiol competitively inhibit the cGMP PDE action with the inhibition constants, Ki, equal to 2.3 · 10−6, 1.0 · 10−4, and 8.7 · 10−5 mol L−1, respectively, and non-competitively inhibit the function of SR Ca2+-ATPase with Ki = 7.4 · 10−5, 7.9 · 10−5 and 1.1 · 10−5 mol L−1, respectively. The thio ligands of the complexes have little effect on the enzyme activity or do not affect it at all. The results obtained make it possible to predict the antihypertensive, antiaggregatory, and vasodilatory activities of the compounds studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. J. Ignarro, J. Physiol. Pharmacol., 2002, 53, 503.

    CAS  PubMed  Google Scholar 

  2. Nitric Oxide: Principles and Actions, Ed. J. J. Lancaster, Acad. Press Inc., San Diego, 1996, 356 pp.

    Google Scholar 

  3. A. F. Vanin, Dinitrosyl Iron Complexes as a “Working Form” of Nitric Oxide in Living Organisms, Cambridge Scholars Publ., Cambridge, UK, 2019, 265 pp.

    Google Scholar 

  4. Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II, Ed. D. M. P. Mingos, Springer, Berlin—Heidelberg, 2014, 260 pp.; DOI: https://doi.org/10.1007/978-3-642-41160-1.

    Google Scholar 

  5. N. A. Sanina, S. M. Aldoshin, N. Yu. Shmatko, D. V. Korchagin, G. V. Shilov, E. V. Knyazkina, N. S. Ovanesyan, A. V. Kulikov, New J. Chem., 2015, 39, 1022; DOI: https://doi.org/10.1039/C4NJ01693A.

    Article  CAS  Google Scholar 

  6. S. Y. Shaban, R. van Eldik, J. Coord. Chem., 2017, 70, 1713; DOI: https://doi.org/10.1080/00958972.2017.1303680.

    Article  CAS  Google Scholar 

  7. H. Lewandowska, M. Kalinowska, K. Brzóska, K. Wójciuk, G. Wójciuk, M. Kruszewski, Dalton Trans., 2011, 40, 8273; DOI: https://doi.org/10.1039/c0dt01244k.

    Article  CAS  PubMed  Google Scholar 

  8. K. B. Shumaev, O. V. Kosmachevskaya, A. A. Timoshin, A. F. Vanin, A. F. Topunov, Methods Enzymol., 2008, 436, 445; DOI: https://doi.org/10.1016/S0076-6879(08)36025-X.

    Article  CAS  PubMed  Google Scholar 

  9. N. A. Sanina, G. I. Kozub, T. A. Kondrat’eva, D. V. Korchagin, G. V. Shilov, R. B. Morgunov, N. S. Ovanesyan, A. V. Kulikov, T. S. Stupina, A. A. Terent’ev, S. M. Aldoshin, J. Mol. Struct., 2022, 1266, 133506; DOI: https://doi.org/10.1016/j.molstruc.2022.133506.

    Article  CAS  Google Scholar 

  10. N. A. Sanina, G. I. Kozub, O. S. Zhukova, D. V. Korchagin, T. A. Kondrat’eva, R. B. Morgunov, A. D. Talantsev, N. S. Ovanesyan, A. V. Kulikov, S. M. Aldoshin, J. Mol. Struct., 2019, 1181, 321; DOI: https://doi.org/10.1016/j.molstruc.2018.11.092.

    Article  CAS  Google Scholar 

  11. G. I. Kozub, N. A. Sanina, N. S. Emel’yanova, A. N. Utenishev, T. A. Kondrat’eva, V. N. Khrustalev, N. S. Ovanesyan, N. E. Kupchinskaya, S. M. Aldoshin, Inorg. Chim. Acta, 2018, 480, 132; DOI: https://doi.org/10.1016/j.ica.2018.05.015.

    Article  CAS  Google Scholar 

  12. K. Omori, J. Kotera, Circ. Res., 2007, 100, 309; DOI: https://doi.org/10.1161/01.RES.0000256354.95791.f1.

    Article  CAS  PubMed  Google Scholar 

  13. J. G. Hardman, G. A. Robison, E. W. Sutherland, Annu. Rev. Physiol., 1971, 33, 311; DOI: https://doi.org/10.1146/annurev.ph.33.030171.001523.

    Article  CAS  PubMed  Google Scholar 

  14. J. S. Padda, J. Tripp, Phosphodiesterase Inhibitors, StatPearls Publishing LLC, Treasure Island (FL), 2022.

    Google Scholar 

  15. G. S. Baillie, G. S. Tejeda, M. P. Kelly, Nat. Rev. Drug Discov., 2019, 18, 770; DOI: https://doi.org/10.1038/s41573-019-0033-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. S. Miller, J. Receptor. Ligand Channel Res., 2015, 8, 19; DOI: https://doi.org/10.2147/JRLCR.S50401.

    Google Scholar 

  17. C. Jansen, A. J. Kooistra, G. K. Kanev, R. Leurs, I. J. P. de Esch, C. de Graaf, J. Med. Chem., 2016, 59, 7029; DOI: https://doi.org/10.1021/acs.jmedchem.5b01813.

    Article  CAS  PubMed  Google Scholar 

  18. J. O. Primeau, G. P. Armanious, M. E. Fisher, H. S. Young, in Membrane Protein Complexes: Structure and Function. Subcellular Biochemistry, Eds J. Harris, E. Boekema, Springer, Singapore, 2018, p. 229; DOI: https://doi.org/10.1007/978-981-10-7757-9_8.

  19. L. Lipskaia, E. R. Chemaly, L. Hadri, A.-M. Lompre, R. J. Hajjar, Expert Opin. Biol. Ther., 2010, 10, 29; DOI: https://doi.org/10.1517/14712590903321462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K. Rahate, L. K. Bhatt, K. S. Prabhavalkar, Chem. Biol. Drug Des., 2020, 95, 5; DOI: https://doi.org/10.1111/cbdd.13620.

    Article  CAS  PubMed  Google Scholar 

  21. J. A. Ardura, L. Álvarez-Carrión, I. Gutiérrez-Rojas, V. Alonso, Cancers, 2020, 12, 1071; DOI: https://doi.org/10.3390/cancers12051071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. R. Denmeade, J. T. Isaacs, Cancer Biol. Ther., 2005, 4, 21; DOI: https://doi.org/10.4161/cbt.4.1.1505.

    Article  Google Scholar 

  23. L. Peterková, E. Kmoníčková, T. Ruml, S. Rimpelová, J. Med. Chem., 2020, 63, 1937; DOI: https://doi.org/10.1021/acs.jmedchem.9b01509.

    Article  PubMed  Google Scholar 

  24. D. Casemore, C. Xing, Integr. Cancer Sci. Ther., 2015, 2, 100; DOI: https://doi.org/10.15761/ICST.1000122.

    Google Scholar 

  25. F. Michelangeli, J. M. East, Biochem. Soc. Trans., 2011, 39, 789; DOI: https://doi.org/10.1042/BST0390789.

    Article  CAS  PubMed  Google Scholar 

  26. V. A. Mumyatova, G. I. Kozub, T. A. Kondrat’eva, A. A. Terent’ev, N. A. Sanina, Russ. Chem. Bull., 2019, 68, 1025; DOI: https://doi.org/10.1007/s11172-019-2514-3.

    Article  CAS  Google Scholar 

  27. L. V. Tat’yanenko, A. I. Kotel’nikov, O. V. Dobrokhotova, E. A. Saratovskikh, N. A. Sanina, T. N. Rudneva, S. M. Aldoshin, Pharm. Chem. J., 2009, 43, 525; DOI: https://doi.org/10.1007/s11094-009-0346-4.

    Article  Google Scholar 

  28. N. A. Sanina, Yu. A. Isaeva, A. N. Utenyshev, P. V. Dorovatovskii, N. S. Ovanesyan, N. S. Emel’yanova, O. V. Pokidova, L. V. Tat’yanenko, I. V. Sulimenkov, A. I. Kotel’nikov, S. M. Aldoshin, Inorg. Chim. Acta, 2021, 527, 120559; DOI: https://doi.org/10.1016/j.ica.2021.120559.

    Article  CAS  Google Scholar 

  29. R. E. Libinzon, T. G. Shchekoldina, O. E. Batolkina, A. M. Iagniatinskaia, Voprosy meditsinskoi khimii [Problems in Med. Chem.], 1977, 23, 526 (in Russian).

    CAS  PubMed  Google Scholar 

  30. V. B. Ritov, V. M. Melgunov, P. G. Komarov, O. M. Alexeeva, E. I. Akimova, Dokl. Akad. Nauk SSSR [Rep. Acad. Sci USSR], 1977, 233, 730 (in Russian).

    CAS  PubMed  Google Scholar 

  31. L. V. Tatyanenko, G. N. Bogdanov, O. V. Dobrokhotova, M. A. Fadeev, B. S. Fedorov, Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem., 2007, 1, 258; DOI: https://doi.org/10.1134/S199075080703016X.

    Article  Google Scholar 

  32. I. V. Berezin, A. A. Klesov, Prakticheskiy kurs khimicheskoy i fermentativnoy kinetiki [Chemical and Enzymatic Kinetics: A Practical Course], Izd-vo MGU, Moscow, 1976, 324 pp. (in Russian).

    Google Scholar 

  33. K.-Y. Wong, J. Gao, FEBS J., 2011, 278, 2579; DOI: https://doi.org/10.1111/j.1742-4658.2011.08187.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. H. Francis, M. D. Houslay, M. Conti, in Phosphodiesterases as Drug Targets, Eds S. H. Francis, M. D. Houslay, M. Conti, Springer, Berlin, 2011, p. 47; DOI: https://doi.org/10.1007/978-3-642-17969-3_2.

  35. Y. H. Jeon, Y.-S. Heo, C. M. Kim, Y.-L. Hyun, T. G. Lee, S. Ro, J. M. Cho, Cell. Mol. Life Sci., 2005, 62, 1198; DOI: https://doi.org/10.1007/s00018-005-4533-5.

    Article  CAS  PubMed  Google Scholar 

  36. O. V. Pokidova, V. B. Luzhkov, N. S. Emel’yanova, V. B. Krapivin, A. I. Kotelnikov, N. A. Sanina, S. M. Aldoshin, Dalton Trans., 2020, 49, 12674; DOI: https://doi.org/10.1039/D0DT02452J.

    Article  CAS  PubMed  Google Scholar 

  37. C. Toyoshima, M. Nakasako, H. Nomura, H. Ogawa, Nature, 2000, 405, 647; DOI: https://doi.org/10.1038/35015017.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Tat’yanenko.

Additional information

This work was carried out within the framework of the State Assignment (Reg. No. AAAA-A19-119071890015-6).

The animal study protocols met the Institutional Animal Ethics Regulations and the Russian Federation laws and international legislation.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 7, pp. 1673–1679, July, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tat’yanenko, L.V., Pokidova, O.V., Goryachev, N.S. et al. Effect of nitrosyl iron complexes and their thio ligands on the activity of phosphodiesterase and sarcoplasmic reticulum Ca2+-ATPase. Russ Chem Bull 72, 1673–1679 (2023). https://doi.org/10.1007/s11172-023-3947-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3947-2

Key words

Navigation