Skip to main content
Log in

Synthesis of 8-carboxamide-substituted angelicin derivatives

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A method for the synthesis of 4-methyl-2-oxo-9-phenyl-2H-furo[2,3-h]chromene-8-carboxylic acid amides combining in the structure the angelicin core with heterocyclic fragments at the amide nitrogen atom was developed. The cytotoxic activity of the obtained amides against the MCF7 (breast adenocarcinoma), A549 (non-small cell lung cancer), VA-13 (embryonic lung fibroblast cells) and HEK293T (embryonic kidney cells) cell lines was studied. In contrast to the previously described highly toxic angelicin derivatives with aryl- and hetarylcarbonyl substituents at position 8, the synthesized amides demonstrated in in vitro experiments in these cell lines the IC50abs values ranging within 2–100 µmol L−1. The cytotoxicity and selectivity of the action of this group of derivatives were found to be significantly affected by the substituent at position 5′ of the angelicin moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. O. Jakubowicz, C. Żaba, G. Nowak, S. Jarmuda, S. Zaba, R. Marcinkowski, An. Agricult. Environ. Medicine, 2012, 19, 327.

    Google Scholar 

  2. A. Denness, J. D. Armitage, A. Culham, New J. Botany, 2013, 3, 183; DOI: https://doi.org/10.1179/2042349713Y.0000000031.

    Article  Google Scholar 

  3. M. A. Pathak, P. C. Joshi, Biochim. Biophys. Acta (BBA) - General Subjects, 1984, 798, 115; DOI: https://doi.org/10.1016/0304-4165(84)90018-7.

    Article  CAS  PubMed  Google Scholar 

  4. S. E. Malawista, D. H. Trock, R. L. Edelson, Arthritis and Rheumatism, 1991, 34, 646; DOI: https://doi.org/10.1002/art.1780340604.

    Article  CAS  PubMed  Google Scholar 

  5. R. S. Cole, D. Levitax, R. R. Sinden, J. Mol. Biol., 1976, 103, 39; DOI: https://doi.org/10.1016/0022-2836(76)90051-6.

    Article  CAS  PubMed  Google Scholar 

  6. S. Caffieri, V. Luccmni, P. Rodighiero, G. Miolo, F. Dall’Acqua, J. Photoch. Photobiol., 1988, 48, 573; DOI: https://doi.org/10.1111/j.1751-1097.1988.tb02866.x.

    Article  CAS  Google Scholar 

  7. I. Lampronti, N. Bianchi, M. Borgatti, E. Fibach, E. Prus, R. Gambari, Eur. J. Haematology, 2003, 71, 189; DOI: https://doi.org/10.1034/j.1600-0609.2003.00113.x.

    Article  CAS  Google Scholar 

  8. H.-J. Cho, S.-G. Jeong, J.-E. Park, J.-A. Han, H.-R. Kang, D. Lee, M. J. Song, Antiviral Res., 2013, 100, 75; DOI: https://doi.org/10.1016/j.antiviral.2013.07.009.

    Article  CAS  PubMed  Google Scholar 

  9. F. Liu, Guo. -Sun, H. Gao, R. Li, L.-W. Soromou, N. Chen, Y.-H. Deng, H. Feng, J. Surgical Res., 2013, 185, 300; DOI: https://doi.org/10.1016/j.jss.2013.05.083.

    Article  CAS  Google Scholar 

  10. X. Li, C. Yu, Y. Hu, X. Xia, Y. Liao, J. Zhang, H. Chen, W. Lu, W. Zhou, Z. Song, Frontiers in Cellular and Infection Microbiology, 2018, 8, 178; DOI: https://doi.org/10.3389/fcimb.2018.00178.

    Article  PubMed  PubMed Central  Google Scholar 

  11. J. Y. Yeh, M. S. Coumar, J.-T. Horng, H.-Y. Shiao, F.-M. Kuo, H.-L. Lee, I.-C. Chen, C.-W. Chang, W.-Fa. Tang, S.-N. Tseng, C.-J. Chen, S.-R. Shih, J. T.-A. Hsu, C.-C. Liao, Y.-S. Chao, H.-P. Hsieh, J. Med. Chem., 2010, 53, 1519; DOI: https://doi.org/10.1021/jm901570x.

    Article  CAS  PubMed  Google Scholar 

  12. S. R. Shih, J.-T. Horng, L. L. M. Poon, T.-C. Chen, J.-Y. Yeh, H.-P. Hsieh, S.-N. Tseng, C. Chiang, W.-L. Li, Y.-S. Chao, J. T.-A. Hsu, J. Antimicrob. Chemother., 2009, 65, 63; DOI: https://doi.org/10.1093/jac/dkp393.

    Article  Google Scholar 

  13. K. Bienz, D. Egger, T. Pfister, M. Troxler, J. Virology, 1992, 66, 2740; DOI: https://doi.org/10.1128/jvi.66.5.2740-2747.1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. F. Wang, J. Li, R. Li, G. Pan, Mi. Bai, Q. Huang, Mol. Med. Rep., 2017, 16, 5441; DOI: https://doi.org/10.3892/mmr.2017.7219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. G. Bor, I. D. M. Azmi, A. Yaghmur, Therapeutic Delivery, 2019, 10, 113; DOI: https://doi.org/10.4155/tde-2018-0062.

    Article  CAS  PubMed  Google Scholar 

  16. L. Santana, E. Uriarte, F. Roleira, N. Milhazes, F. Borges, Curr. Med. Chem., 2004, 11, 3239; DOI: https://doi.org/10.2174/0929867043363721.

    Article  CAS  PubMed  Google Scholar 

  17. S. S. Shatokhin, V. A. Tuskaev, S. Ch. Gagieva, É. T. Oganesyan, Russ. Chem. Bull., 2021, 70, 1011; DOI: https://doi.org/10.1007/s11172-021-3183-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. S. Kobzev, A. A. Titov, A. V. Varlamov, Russ. Chem. Bull., 2021, 70, 1213; DOI: https://doi.org/10.1007/s11172-021-3208-1.

    Article  CAS  Google Scholar 

  19. M. A. Polovinkina, V. P. Osipova, A. D. Osipova, I. V. Kanevskaya, A. L. Ivanova, N. V. Pchelintseva, N. T. Berberova, Russ. Chem. Bull., 2022, 71, 2645; DOI: https://doi.org/10.1007/s11172-022-3694-9.

    Article  CAS  Google Scholar 

  20. J. Jiang, X. Wang, K. Cheng, W. Zhao, Y. Hua, C. Xu, Z. Yang, Mol. Med. Rep., 2016, 13, 4745; DOI: https://doi.org/10.3892/mmr.2016.5098.

    Article  CAS  PubMed  Google Scholar 

  21. J. Mottaghipisheh, M. Nové, G. Spengler, N. Kúsz, J. Hohmann, D. Csupor, Pharm. Biol., 2018, 56, 658; DOI: https://doi.org/10.1080/13880209.2018.1548625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. K. He, P. F. Hollenberg, T. F. Woolf, Compositions containing bergamottin for increasing the oral bioavailability of pharmaceutical agents, US Pat. 6509371B1, 2003.

  23. H.-P. Hsieh, J.-Y. Chang, C.-C. Kuo, Y.-S. Chao, Coumarin compounds and their use for treating cancer, US Pat. 2009/0312317 A1, Dec. 17, 2009.

  24. K. S. Sadovnikov, D. A. Vasilenko, Y. A. Gracheva, N. A. Zefirov, E. V. Radchenko, V. A. Palyulin, Y. K. Grishin, V. A. Vasilichin, A. A. Shtil, P. N. Shevtsov, E. F. Shevtsova, T. S. Kuznetsova, S. A. Kuznetsov, A. S. Bunev, O. N. Zefirova, E. R. Milaeva, E. B. Averina, Arch. Pharm., 2022, 355, No. 2100425; DOI: https://doi.org/10.1002/ardp.202100425.

  25. T. J. Mosmann, J. Immunol. Methods, 1983, 65, 55; DOI: https://doi.org/10.1016/0022-1759(83)90303-4.

    Article  CAS  PubMed  Google Scholar 

  26. L. Tietze, T. Eicher, Reaktionen und Synthesen im Organisch-Chemischen Praktikum und Forschungslaboratorium [Preparative Organic Chemistry], Georg Thiemeverlag, Stuttgard, New York, 1991.

    Book  Google Scholar 

  27. D. A. Vasilenko, K. S. Sadovnikov, K. N. Sedenkova, A. V. Kurova, Y. K. Grishin, T. S. Kuznetsova, V. B. Rybakov, Y. A. Volkova, E. B. Averina, Synthesis, 2020, 52, 1398; DOI: https://doi.org/10.1055/s-0039-1690053.

    Article  CAS  Google Scholar 

  28. N. I. Vorozhtov, G. A. Golubeva, Chem. Heterocycl. Compd., 2005, 41, 1307; DOI: https://doi.org/10.1007/s10593-005-0317-y.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Beloglazkina.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 22-14-00099, evaluation of the cytotoxicity of synthesized compounds). The synthesis of isoxazole 9 and 14 was carried out within the framework of the Russian state assignment on the topic “Molecular design, synthesis, and study of physiologically active substances, development of the methodology of medical chemistry, chemoinformatics, and directed chemical synthesis” (No. TsITIS 121021000105-7, TsITIS is the Center for Information Technologies and Systems), the synthesis of other compounds was carried out within the framework of the Russian state assignment on the topic “Synthesis and study of physical, chemical and biological properties of organic and organo-element compounds” (No. TsITIS AAAA-A21-121012290046-4).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 7, pp. 1598–1605, July, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyatskina, S.R., Olshanova, A.S., Dagaev, N.D. et al. Synthesis of 8-carboxamide-substituted angelicin derivatives. Russ Chem Bull 72, 1598–1605 (2023). https://doi.org/10.1007/s11172-023-3939-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3939-2

Key words

Navigation