Skip to main content
Log in

Continuous films of methyl pheophorbide a obtained by drop-casting from a multicomponent mixture for photoelectric measurements

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A new method for obtaining continuous films of methyl pheophorbide a (Pheo) from a four-component solvent consisting of DMF, hexane, toluene, and ethanol was described. This technique ensures that prepared samples are reproducible and suitable for studying conductivity and developing thin-film photovoltaic converter prototypes. The absorption spectra of Pheo solutions with varying concentrations were measured. Pheo does not associate in solutions of toluene, chloroform, DMF, and a four-component solvent did not occur in the concentration range at which the solutions were transparent to visible radiation. The current-voltage characteristics of continuous Pheo films were measured in the dark and upon exposure to light. Upon exposure to sunlight (105 lx), a Pheo-based solar cell prototype demonstrated a low efficiency (0.003%) and occupancy factor (24%), as well as a relatively high open-circuit voltage (0.58 V) and short-circuit current (0.01 mA cm−2). These characteristics can be improved by optimizing the solar cell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Patwardhan, S. Sengupta, L. D. A. Siebbeles, F. Würthner, F. C. Grozema, J. Am. Chem. Soc., 2012, 39, 16147–16150; DOI: https://doi.org/10.1021/ja3075192.

    Article  Google Scholar 

  2. B. Mansoori, A. Mohammadi, M. A. Doustvandi, F. Mohammadnejad, F. Kamari, M. F. Gjerstorff, B. Baradaran, M. R. Hamblin, Photodiagnosis Photodyn. Ther., 2019, 26, 395–404; DOI: https://doi.org/10.1016/j.pdpdt.2019.04.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Duan, G. Chen, M. Li, G. Chen, X.-F. Wang, H. Tamiaki, S.-I. Sasaki, J. Photochem. Photobiol. A: Chem., 2017, 347, 49–54; DOI: https://doi.org/10.1016/j.jphotochem.2017.07.014.

    Article  CAS  Google Scholar 

  4. O. I. Koifman, P. A. Stuzhin, V. V. Travkin, G. L. Pakhomov, RSC Adv., 2021, 11, 15131; DOI: https://doi.org/10.1039/d1ra01508g.

    Article  CAS  Google Scholar 

  5. A. I. Koptyaev, V. V. Travkin, Y. I. Sachkov, Y. V. Romanenko, G. L. Pakhomov, J. Mar. Sci. Eng., 2021, 13, 17791–17799; DOI: https://doi.org/10.1007/s10854-021-06315-5.

    Google Scholar 

  6. Y. Diao, L. Shaw, Zh. Bao, S. C. B. Mannsfeld, Energy Environ. Sci., 2014, 7, 2145; DOI: https://doi.org/10.1039/c4ee00688g.

    Article  CAS  Google Scholar 

  7. J. Y. Na, B. Kang, D. H. Sin, K. Cho, Y. D. Park, Sci. Rep., 5, 13288; DOI: https://doi.org/10.1038/srep13288.

  8. R. R. Cranston, B. H. Lessard, RSC Adv., 2021, 11, 21716–21737; DOI: https://doi.org/10.1039/d1ra03853b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D. B. Berezin, V. V. Makarov, S. S. Guseinov, Yu. V. Romanenko, I. S. Khudyaeva, O. M. Startseva, D. V. Belykh, A. V. Kustov, Russ. J. Gen. Chem., 2017, 87, 1557–1561; DOI: https://doi.org/10.1134/S1070363217070192.

    Article  CAS  Google Scholar 

  10. Ch. Tang, M. Mullen, W. B. Euler, AIMS Mater. Sci., 2020, 7, 60–74; DOI: https://doi.org/10.3934/matersci.2020.1.60.

    Article  CAS  Google Scholar 

  11. O. I. Nikolaeva, Y. V. Romanenko, T. A. Ageeva, O. I. Koifman, Macroheterocycles, 2012, 5, 139–145, DOI: https://doi.org/10.6060/mhc2012.120679n.

    Article  Google Scholar 

  12. A. L. Stolypko, D. V. Belykh, Macroheterocycles, 2015, 8, 389–393; DOI: https://doi.org/10.6060/mhc151085b.

    Article  Google Scholar 

  13. R. Cherrington, J. Liang, in Design and Manufacture of Plastic Components for Multifunctionality, Eds V. Goodship, B. Middleton, R. Cherrington, Elsevier, 2016, 236 pp.; DOI: https://doi.org/10.1016/B978-0-323-34061-8.00002-8.

  14. A. S. Steparuk, R. A. Irgashev, G. L. Rusinov, E. V. Krivogina, S. A. Kozyukhin, P. I. Lazarenko, Russ. Chem. Bull., 2019, 68, 1208–1212; DOI: https://doi.org/10.1007/s11172-019-2542-z.

    Article  CAS  Google Scholar 

  15. A. B. Nikolskaia, M. F. Vildanova, S. S. Kozlov, O. I. Shevaleevskiy, Russ. Chem. Bull., 2020, 69, 1245–1252; DOI: https://doi.org/10.1007/s11172-020-2894-4.

    Article  CAS  Google Scholar 

  16. A. K. S. Kumar, Y. Zhang, D. Li, R. G. Compton, Electrochem. Commun., 2020, 121, 106867; DOI: https://doi.org/10.1016/j.elecom.2020.106867.

    Article  Google Scholar 

  17. A. Goswami, S. C. Pillai, G. McGranaghan, Surf. Interfaces, 2021, 25, 101143; DOI: https://doi.org/10.1016/j.surfin.2021.101143.

    Article  CAS  Google Scholar 

  18. M. B. Berezin, Termokhimiya sol’vatatsii khlorofilla i rodstvennykh soedineniy [Thermochemistry of Solvation of Chlorophyll and Related Compounds], KRASAND, Moscow, 2008, 256 pp. (in Russian).

    Google Scholar 

  19. N. V. Vostokov, V. M. Danil’tsev, Yu. N. Drozdov, D. A. Pryakhin, V. I. Shashkin, I. Yu. Shuleshova, Tech. Phys. Lett., 2007, 5, 444–446; DOI: https://doi.org/10.1134/S1063785007050252.

    Article  Google Scholar 

  20. M. Goutermann, The Porphyrins, 1978, 1–165; DOI: https://doi.org/10.1016/b978-0-12-220103-5.50008-8.

  21. S. Mokkapati, K. R. Catchpole, J. Appl. Phys., 2012, 112, 101101; DOI: https://doi.org/10.1063/1.4747795.

    Article  Google Scholar 

  22. N. Beaumont, J. S. Castrucci, P. Sullivan, G. E. Morse, A. S. Paton, Zh.-H. Lu, T. P. Bender, T. S. Jones, J. Phys. Chem. C, 2014, 118, 14813–14823; DOI: https://doi.org/10.1021/jp503578g.

    Article  CAS  Google Scholar 

  23. J. Labella, C. Momblona, N. Klipfel, H. Kanda, S. Kinge, M. K. Nazeeruddin, T. Torres, Mater. Chem. C, 2021, 9, 16298–16303; DOI: https://doi.org/10.1039/d1tc02600c.

    Article  CAS  Google Scholar 

  24. W. Tress, K. Leo, M. Riede, Adv. Funct. Mater., 2011, 21, 2140–2149; DOI: https://doi.org/10.1002/adfm.201002669.

    Article  CAS  Google Scholar 

  25. P. A. Yunin, V. V. Travkin, Yu. I. Sachkov, A. I. Koptyaev, P. A. Stuzhin, G. L. Pakhomov, Appl. Surf. Sci., 2020, 512, 145645; DOI: https://doi.org/10.1016/j.apsusc.2020.145645.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Koptyaev.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 20-13-00285).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 7, pp. 1542–1552, July, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rychikhina, E.D., Semikov, D.A., Sachkov, Y.I. et al. Continuous films of methyl pheophorbide a obtained by drop-casting from a multicomponent mixture for photoelectric measurements. Russ Chem Bull 72, 1542–1552 (2023). https://doi.org/10.1007/s11172-023-3932-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3932-9

Key words

Navigation