Skip to main content
Log in

Analysis of the kinetics of soluble polyimide formation by the thermal imidization of polyamic acids in amide solvents with allowance for the side reaction of anhydride group hydrolysis

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A kinetic analysis of the process aimed at preparing soluble polyimide by the thermal imidization of a prepolymer, polyamic acid (PAA), in a dimethylacetamide solution in a temperature range of 120–160 °C was carried out. The scheme including elementary reactions of imidization, synthesis, and decomposition of PAA, as well as the reversible side reaction of hydrolysis of anhydride groups with water released during imidization was used in the analysis. The PAA was synthesized by the low-temperature polycondensation of 2,2-bis[(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (BPADA) and 2,2-bis(4-aminophenoxyphenyl)propane (BAPP). The rate constants of hydrolysis of anhydride groups and dehydration of phthalic acid fragments were determined experimentally for model compounds: phthalic anhydride and phthalic acid. The experimentally found rate constants of elementary reactions of imidization, decay, and synthesis of PAA of the same chemical structure and in the same temperature range determined by the authors earlier were also used in the calculations. The solution of the system of kinetic equations was performed by the numerical integration using the Maple 17 software. The developed model makes it possible to calculate the dependence of the change in the number average molecular weight of the formed polyimide. According to the calculation results, the initial PAA concentration affects the character of the dependence: the higher the initial concentration of PAA, the more noticeable the role of the side reaction of hydrolysis of terminal anhydride groups, which reduces the rate of increasing average degree of polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Ree, Macromol. Res., 2006, 14, 1; DOI: https://doi.org/10.1007/BF03219064.

    Article  CAS  Google Scholar 

  2. C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards, K. L. Olivier, J. Polym. Sci., Part A, 1965, 3, 1373.

    CAS  Google Scholar 

  3. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, L. A. Laius, in Poliimidy — klass termostoikikh polimerov [Polyimides—A Class of Thermostable Polymers], Nauka, Leningrad, 1983, p. 328 (in Russian).

    Google Scholar 

  4. I. A. Novakov, B. S. Orlinson, D. V. Zavyalov, A. I. Bogdanov, E. N. Savelyev, E. A. Potayenkova, M. A. Nakhod, A. M. Pichugin, A. G. Polikarpova, M. N. Kovaleva, P. E. Antonova, Russ. Chem. Bull., 2022, 71, 750; DOI: https://doi.org/10.1007/s11172-022-3475-5.

    Article  CAS  Google Scholar 

  5. P. L. Nechaev, Ya. S. Vygodskii, G. E. Zaikov, S. V. Vinogradova, Polym. Sci. USSR, 1976, 18, 1903; DOI: https://doi.org/10.1016/0032-3950(76)90371-3.

    Article  Google Scholar 

  6. F. W. Harris, in Polyimides, Eds D. Wilson, H. D. Stenzenberger, P. M. Hergenrother, Springer Dordrecht, New York, 1990, p. 297; DOI: https://doi.org/10.1007/978-94-010-9661-4_1.

    Google Scholar 

  7. C. E. Sroog, Progress in Polym. Sci., 1991, 16, 561; DOI: https://doi.org/10.1016/0079-6700(91)90010-I.

    Article  CAS  Google Scholar 

  8. P. E. Cassidy, J. Macromol. Sci., Part A — Chemistry, 1981, 15, 1435; DOI: https://doi.org/10.1080/00222338108056792.

    Article  Google Scholar 

  9. R. G. Bryant, Polyimides, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley and Sons, Hoboken, 2006; DOI: https://doi.org/10.1002/0471238961.1615122520011105.a01.pub2.

    Google Scholar 

  10. A. I. Kol’tsov, N. G. Bel’nikevich, V. M. Denisov, L. N. Korzhavin, N. V. Mikhailova, V. N. Nikitin, Polym. Sci. USSR, 1974, 16, 2912; DOI: https://doi.org/10.1016/0032-3950(74)90494-8.

    Article  Google Scholar 

  11. E. Pyun, R. J. Mathisen, C. S. P. Sung, Macromolecules, 1989, 22, 1174; DOI: https://doi.org/10.1021/ma00193a031.

    Article  CAS  Google Scholar 

  12. G. M. Bower, L. W. Frost, J. Polym. Sci., Part A, 1963, 1, 3135; DOI: https://doi.org/10.1002/pol.1963.100011009.

    CAS  Google Scholar 

  13. L. W. Frost, I. Kesse, J. Appl. Polym. Sci., 1964, 8, 1039; DOI: https://doi.org/10.1002/app.1964.070080302.

    Article  CAS  Google Scholar 

  14. R. A. Dine-Hart, W. W. Wright, J Appl. Polym. Sci., 1967, 11, 609; DOI: https://doi.org/10.1002/app.1967.070110501.

    Article  CAS  Google Scholar 

  15. J. A. Kreuz, A. L. Endrey, F. P. Gay, C. E. Sroog, J. Appl. Polym. Sci., Part A-1, 1966, 4, 2607; DOI: https://doi.org/10.1002/pol.1966.150041023.

    Article  CAS  Google Scholar 

  16. L. A. Laius, M. I. Bessonov, Ye. V. Kallistova, N. A. Adrova, F. S. Florinskii, Polym. Sci. USSR, 1967, 9, 2470; DOI: https://doi.org/10.1016/0032-3950(67)90254-7.

    Article  Google Scholar 

  17. V. M. Denisov, A. I. Kol’tsov, N. V. Mikhailova, V. N. Nikitin, M. I. Bessonov, N. A. Glukhov, L. M. Shcherbakova, Polym. Sci. USSR, 1976, 18, 1780; DOI: https://doi.org/10.1016/0032-3950(76)90308-7.

    Article  Google Scholar 

  18. Z. V. Gerashchenko, Ya. S. Vygodskii, G. L. Slonimskii, A. A. Askadskii, V. S. Papkov, S. V. Vinogradova, V. G. Dashevskii, V. A. Klimova, F. B. Sherman, V. V. Korshak, Polym. Sci. USSR, 1973, 15, 1927; DOI: https://doi.org/10.1016/0032-3950(73)90406-1.

    Article  Google Scholar 

  19. M. I. Tsapovetskii, L. A. Laius, Polym. Sci. USSR, 1982, 24, 1103; DOI: https://doi.org/10.1016/0032-3950(82)90212-X.

    Article  Google Scholar 

  20. S. V. Lavrov, O. B. Talankina, V. D. Vorob’yev, A. L. Izyumnikov, I. Ye. Kardash, A. N. Pravednikov, Polym. Sci. USSR, 1980, 22, 2069; DOI: https://doi.org/10.1016/0032-3950(80)90264-6.

    Article  Google Scholar 

  21. S. V. Lavrov, I. Ye. Kardash, A. N. Pravednikov, Polym. Sci. USSR, 1977, 19, 2727; DOI: https://doi.org/10.1016/0032-3950(77)90359-8.

    Article  Google Scholar 

  22. A. N. Pravednikov, I. Ye. Kardash, N. P. Glukhoyedov, A. Ya. Ardashnikov, Polym. Sci. USSR, Sci. A, 1973, 15, 399; DOI: https://doi.org/10.1016/0032-3950(73)90211-6.

    Article  Google Scholar 

  23. E. V. KaMzolkina, P. P. Nechaev, V. S. Markin, Ya. S. Vygodskii, T. V. Grigor’eva, G. E. Zaikov, Dokl. Chem., 1974, 219, 650.

    CAS  Google Scholar 

  24. E. V. KaMzolkina, G. Teies, V. S. Markin, P. P. Nechaev, Polym. Sci. USSR, Ser. B, 1978, 20, 423.

    CAS  Google Scholar 

  25. A. Ya. Ardashnikov, I. E. Kardash, A. N. Pravednikov, Polym. Sci. USSR, Ser. A, 1971, 13, 2092; DOI: https://doi.org/10.1016/0032-3950(71)90411-4].

    Article  Google Scholar 

  26. A. V. Ustimov, A. Yu. Tsegelskaya, G. K. Semenova, A. A. Kuznetsov, Russ. Chem. Bull., 2022, 71, 1284; DOI: https://doi.org/10.1007/s11172-022-3532-0.

    Article  CAS  Google Scholar 

  27. A. G. Chernova, L. S. Bublik, L. P. Okuneva, V. V. Rodionov, A. V. Ivanova, V. D. Vorob’ev, Plasticheskie massy [Plastics], 1975, 3, 11 (in Russian).

    Google Scholar 

  28. V. A. Solomin, I. E. Kardash, Yu. S. Snagovskii, P. E. Messerle, B. A. Zhubanov, A. N. Pravednikov, Dokl. Akad. Nauk SSSR [Rep. USSR Acad. Sci.], 1977, 236, 139 (in Russian).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Tsegelskaya.

Additional information

The work was carried out using the equipment basis of the Center for Collective Use at the N. S. Enikolopov Institute of Synthetic Polymer Materials (Russian Academy of Sciences).

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (theme No. FFSM-2021-0006).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 7, pp. 1533–1541, July, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustimov, A.V., Tsegelskaya, A.Y., Semenova, G.K. et al. Analysis of the kinetics of soluble polyimide formation by the thermal imidization of polyamic acids in amide solvents with allowance for the side reaction of anhydride group hydrolysis. Russ Chem Bull 72, 1533–1541 (2023). https://doi.org/10.1007/s11172-023-3931-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3931-x

Key words

Navigation