Skip to main content
Log in

Total and preferential CO oxidation on low-loaded Pt-HZSM-5 zeolites modified using laser electrodispersion

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Platinum particles of 1.7 nm size were deposited on the external surface of HZSM-5 zeolites with Si/Al = 15, 28, and 40 using laser electrodispersion (LED) method. The obtained materials with low Pt loading (0.01–0.05 wt.%) were studied by transmission electron microscopy and X-ray photoelectron spectroscopy and tested in the catalytic oxidation of CO in the absence and in the presence of hydrogen The Pt/HZSM-5 catalyst modified by chemical impregnation was used as the reference sample. The best performance was found for the catalyst prepared by deposition of 0.05 wt.% Pt on the zeolite with the intermediate Si/Al ratio of 28. The CO conversion over this catalyst in the presence of hydrogen at 130 °C was 100%. The enhanced activity and selectivity of zeolites modified with Pt using LED are caused by the high degree of dispersion of particles, the pattern of particle distribution on the support surface, and the simultaneous presence of metallic and oxidized platinum on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H.-J. Freund, G. Meijer, M. Scheffler, R. Schlögl, M. Wolf, Angew. Chem., Int. Ed., 2011, 50, 10064; DOI: https://doi.org/10.1002/anie.201101378.

    Article  CAS  Google Scholar 

  2. S. M. McClure, D. W. Goodman, Chem. Phys. Lett., 2009, 469, 1; DOI: https://doi.org/10.1016/j.cplett.2008.12.066.

    Article  CAS  Google Scholar 

  3. J. Lin, X. Wang, T. Zhang, Chin. J. Catal., 2016, 37, 1805; DOI: https://doi.org/10.1016/S1872-2067(16)62513-5.

    Article  CAS  Google Scholar 

  4. S. Neumann, T. Gutmann, G. Buntkowsky, S. Paul, G. Thiele, H. Sievers, M. Bäumer, S. Kunz, J. Catal., 2019, 377, 662; DOI: https://doi.org/10.1016/j.jcat.2019.07.049.

    Article  CAS  Google Scholar 

  5. X. Zhou, M. Wang, D. Yan, Q. Li, H. Chen, J. Catal., 2019, 379, 138; DOI: https://doi.org/10.1016/j.jcat.2019.09.029.

    Article  CAS  Google Scholar 

  6. B. J. Cha, S. Y. Kim, C. M. Choi, J. Y. Sung, M. C. Choi, H. O. Seo, Y. D. Kim, Chem. Eng. J., 2021, 404, 126560; DOI: https://doi.org/10.1016/j.cej.2020.126560.

    Article  CAS  Google Scholar 

  7. A. P. Wong, E. A. Kyriakidou, T. J. Toops, J. R. Regalbuto, Catal. Today, 2016, 267, 145; DOI: https://doi.org/10.1016/j.cattod.2016.02.011.

    Article  CAS  Google Scholar 

  8. A. A. Vedygin, A. M. Volodin, R. M. Kwnzhin, V. O. Stoyanovskii, V. A. Rogov, V. V. Kriventsov, I. V. Mishakov, Catal. Today, 2018, 307, 102; DOI: https://doi.org/10.1016/j.cattod.2017.01.033.

    Article  Google Scholar 

  9. A. Tripathi, C. Hareesh, S. Sinthika, G. Andersson, R. Thapa, Appl. Surf. Sci., 2020, 528, 146964; DOI: https://doi.org/10.1016/j.apsusc.2020.146964.

    Article  CAS  Google Scholar 

  10. E. D. Park, D. Lee, H. C. Lee, Catal. Today, 2009, 139, 280; DOI: https://doi.org/10.1016/j.cattod.2008.06.027.

    Article  CAS  Google Scholar 

  11. D. S. Paz, S. Damyanov, L. R. Borges, J. B. O Santos, J. M. C. Bueno, App. Catal., A, 2017, 548, 164; DOI: https://doi.org/10.1016/j.apcata.2017.08.012.

    Article  CAS  Google Scholar 

  12. J. Kumar, G. Deo, D. Kunzru, Int. J. Hydrogen Energy, 2016, 41, 18494; DOI: https://doi.org/10.1016/j.jjhydene.2016.08.109.

    Article  CAS  Google Scholar 

  13. F. Mariño, C. Descorme, D. Duprez, Appl. Catal., B, 2004, 54, 59; DOI: https://doi.org/10.1016/j.apcatb.2004.06.008.

    Article  Google Scholar 

  14. A. S. Ivanova, E. M. Slavinskaya, R. V. Gulyaev, V. I. Zaikovskii, O. A. Stonkus, I. G. Danilova, L. M. Plyasova, I. A. Polukhina, A. I. Boronin, Appl. Catal., B, 2010, 97, 57; DOI: https://doi.org/10.1016/j.apcatb.2010.03.024.

    Article  CAS  Google Scholar 

  15. J. Liu, A. J. R. Hensley, G. Giannakakis, A. J. Therrien, A. Sukkar, A. C. Schilling, K. Groden, N. Ulumuddin, R. T. Hannagan, M. Ouyang, M. Flytzani-Stepha-nopoulosa, J.-S. McEwen, E. C. H. Sykes, Appl. Catal., B, 2021, 284, 119716; DOI: https://doi.org/10.1016/j.apcatb.2020.119716.

    Article  CAS  Google Scholar 

  16. C. Feng, X. Liu, T. Zhu, Y. Hu, M. Tian, Appl. Catal., A, 2021, 622, 118218; DOI: https://doi.org/10.1016/j.apcata.2021.118218.

    Article  CAS  Google Scholar 

  17. H. Zhang, X. Liu, N. Zhang, J. Zheng, Y. Zheng, Y. Li, C.-J. Zhong, B. H. Chen, Appl. Catal., B, 2016, 180, 237; DOI: https://doi.org/10.1016/j.apcatb.2015.06.032.

    Article  CAS  Google Scholar 

  18. B. R. Cuenya, Thin Solid Films, 2010, 518, 3127; DOI: https://doi.org/10.1016/j.tsf.2010.01.018.

    Article  CAS  Google Scholar 

  19. D. Uzio, G. Berhault, Catal. Rev., 2010, 52, 106; DOI: https://doi.org/10.1080/01614940903510496.

    Article  CAS  Google Scholar 

  20. E. S. Lokteva, E. V. Golubina, Pure Appl. Chem., 2019, 91, 609; DOI: https://doi.org/10.1515/pac-2018-0715.

    Article  CAS  Google Scholar 

  21. X. Chen, J. Chen, Y. Zhao, M. Chen, H. Wan, Chin. J. Catal., 2012, 33, 1901; DOI: https://doi.org/10.1016/S1872-2067(11)60447-6.

    Article  CAS  Google Scholar 

  22. J. Březina, R. Pečinka, P. Boutikos, P. Kočí, Chem. Eng. Sci., 2020, 218, 115542; DOI: https://doi.org/10.1016/j.ces.2020.115542.

    Article  Google Scholar 

  23. F. Morfin, T.-S. Nguyen, J.-L. Rousset, L. Piccolo, Appl. Catal., B, 2016, 197, 2; DOI: https://doi.org/10.1016/j.apcatb.2016.01.056.

    Article  CAS  Google Scholar 

  24. M.-C. Jo, G.-H. Kwon, W. Li, A. M. Lane, J. Ind. Eng. Chem., 2009, 15, 336; DOI: https://doi.org/10.1016/j.jiec.2008.11.014.

    Article  CAS  Google Scholar 

  25. A. Boubnov, S. Dahl, E. Johnson, A. P. Molina, S. B. Simonsen, F. M. Cano, S. Helveg, L. J. Lemus-Yegres, J.-D. Grunwaldt, Appl. Catal., B, 2012, 126, 315; DOI: https://doi.org/10.1016/j.apcatb.2012.07.029.

    Article  CAS  Google Scholar 

  26. J. Singh, J. A. van Bokhoven, Catal. Today, 2010, 155, 199; DOI: https://doi.org/10.1016/j.cattod.2009.12.006.

    Article  CAS  Google Scholar 

  27. G. Busca, E. Finocchio, V. S. Escribano, Appl. Catal., B, 2012, 113–114, 172; DOI: 28

    Article  Google Scholar 

  28. A. I. Boronin, E. M. Slavinskaya, A. Figueroba, A. I. Stadnichenko, T. Yu. Kardash, O. A. Stonkus, E. A. Fedorova, V. V. Muravev, V. A. Svetlichnyi, A. Bruix, K. M. Neyman, Appl. Catal., B, 2021, 286, 119931; DOI: https://doi.org/10.1016/j.apcatb.2021.119931.

    Article  CAS  Google Scholar 

  29. Y. Chen, J. Lin, L. Li, X. Pan, Xi. Wang, T. Zhang, Appl. Catal., B, 2021, 282, 119588; DOI: https://doi.org/10.1016/j.apcatb.2020.119588.

    Article  CAS  Google Scholar 

  30. V. P. Pakharukova, I. Yu. Pakharukov, V. I. Bukhtiyarov, V. N. Parmon, Appl. Catal., A, 2014, 486, 12; DOI: https://doi.org/10.1016/j.apcata.2014.08.014.

    Article  CAS  Google Scholar 

  31. J. Xu, X.-C. Xu, L. Ouyang, X.-J. Yang, W. Mao, J. Su, Y.-F. Han, J. Catal., 2012, 287, 114; DOI: https://doi.org/10.1016/j.jcat.2011.12.012.

    Article  CAS  Google Scholar 

  32. Z. Ou, Y. Li, W. Wu, Y. Bi, E. Xing, T. Yu, Q. Chen, Chem. Eng. J., 2022, 430, 132925; DOI: https://doi.org/10.1016/j.cej.2021.132925.

    Article  CAS  Google Scholar 

  33. I. Rosso, C. Galletti, G. Saracco, E. Garrone, V. Specchia, Appl. Catal., B, 2004, 48, 195; DOI: https://doi.org/10.1016/j.apcatb.2003.10.016.

    Article  CAS  Google Scholar 

  34. V. Sebastian, S. Irusta, R. Mallada, J. Santamaría, Appl. Catal., A, 2009, 366, 242; DOI: https://doi.org/10.1016//j.apcata.2009.06.044.

    Article  CAS  Google Scholar 

  35. X. Zhou, M. Wang, D. Yan, Q. Li, H. Chen, J. Catal., 2019, 379, 138; DOI: https://doi.org/10.1016/j.jcat.2019.09.029.

    Article  CAS  Google Scholar 

  36. V. V. Pushkarev, Z. Zhu, K. An, A. Hervier, G. A. Somorjai, Top. Catal., 2012, 55, 1257; DOI: https://doi.org/10.1007/s11244-012-9915-y.

    Article  CAS  Google Scholar 

  37. W. D. Michalak, J. M. Krier, S. Alayoglu, J.-Y. Shin, K. An, K. Komvopoulos, Z. Liu, G. A. Somorjai, J. Catal., 2014, 312, 17; DOI: https://doi.org/10.1016/j.jcat.2014.01.005.

    Article  CAS  Google Scholar 

  38. R. C. Forsythe, C. P. Cox, M. K. Wilsey, A. M. Müller, Chem. Rev., 2021, 121, 7568; DOI: https://doi.org/10.1021/acs.chemrev.0c01069.

    Article  CAS  PubMed  Google Scholar 

  39. T. N. Rostovshchikova, E. S. Lokteva, M. I. Shilina, E. V. Golubina, K. I. Maslakov, I. N. Krotova, A. A. Bryzhin, I. G. Tarkhanova, O. V. Udalova, V. M. Kozhevin, D. A. Yavsin, S. A. Gurevich, Russ. J. Phys. Chem. A, 2021, 95, 451; DOI: https://doi.org/10.1134/S0036024421030171.

    Article  CAS  Google Scholar 

  40. A. A. Bryzhin, E. V. Golubina, K. I. Maslakov, E. S. Lokteva, I. G. Tarkhanova, S. A. Gurevich, D. A. Yavsin, T. N. Rostovshchikova, ChemCatChem, 2020, 12, 4396; DOI: https://doi.org/10.1002/cctc.202000501.

    Article  CAS  Google Scholar 

  41. E. V. Golubina, T. N. Rostovshchikova, E. S. Lokteva, K. I. Maslakov, S. A. Nikolaev, M. I. Shilina, S. A. Gurevich, V. M. Kozhevin, D. A. Yavsin, E. M. Slavinskay, Appl. Surf. Sci., 2021, 536, 147656; DOI: https://doi.org/10.1016/j.apsusc.2020.147656.

    Article  CAS  Google Scholar 

  42. T. N. Rostovshchikova, M. I. Shilina, S. A. Gurevich, D. A. Yavsin, G. B. Veselov, A. A. Vedyagin, Dokl. Phys. Chem., 2022, 506, 123; DOI: https://doi.org/10.1134/S001250162260019X.

    Article  CAS  Google Scholar 

  43. T. N. Rostovshchikova, S. A. Nikolaev, I. N. Krotova, K. I. Maslakov, O. V. Udalova, S. A. Gurevich, D. A. Yavsin, M. I. Shilina, Russ. Chem. Bull., 2022, 71, 1179; DOI: https://doi.org/10.1007/s11172-022-3519-x.

    Article  CAS  Google Scholar 

  44. A. Yu. Stakheev, A. M. Batkin, N. S. Teleguina, G. O. Bragina, V. I. Zaikovsky, I. P. Prosvirin, A. K. Khudo-rozhkov, V. I. Bukhtiyarov, Top. Catal., 2013, 56, 306; DOI: https://doi.org/10.1007/s11244-013-9971-y.

    Article  CAS  Google Scholar 

  45. V. A. Saveleva, V. Papaefthimiou, M. K. Daletou, W. H. Doh, C. Ulhaq-Bouillet, M. Diebold, S. Zafeiratos, E. R. Savinova, J. Phys. Chem. C, 2016, 120, 15930; DOI: https://doi.org/10.1021/acs.jpcc.5b12410.

    Article  CAS  Google Scholar 

  46. Q. Li, K. Wang, S. Zhang, M. Zhang, J. Yang, Z. Jin, J. Mol. Catal., A: Chem., 2006, 258, 83; DOI: https://doi.org/10.1016/j.molcata.2006.05.030.

    Article  CAS  Google Scholar 

  47. X. Wang, X. Wang, H. Yu, X. Wang, Chem Eng. J., 2019, 355, 470; DOI: https://doi.org/10.1016/j.cej.2018.07.207.

    Article  CAS  Google Scholar 

  48. G. Busca, Chem. Rev., 2007, 107, 5366; DOI: https://doi.org/10.1021/cr068042e.

    Article  CAS  PubMed  Google Scholar 

  49. O. V. Krylov, Heterogeneous Catalysis: Textbook, PTC Akademkniga, Moscow, 2004, 679 pp., ISBN 5-94628-141-0.

    Google Scholar 

  50. M. Gao, Z. Gong, X. Weng, W. Shang, Y. Chai, W. Dai, G. Wu, N. Guan, L. Li, Chin. J. Catal., 2021, 42, 1689; DOI: https://doi.org/10.1016/S1872-2067(20)63775-5.

    Article  CAS  Google Scholar 

  51. H. Hasseiniamoli, G. Bryant, E. M. Kennedy, K. Mathisen, D. Nichoison, G. Sankar, A. Setiwan, M. Stockenhuber, ACS Catal., 2018, 8, 5852; DOI: https://doi.org/10.1021/acscatal.7b04462.

    Article  Google Scholar 

  52. S. H. Park, M. S. Tzou, W. M. H. Sachtler, Appl. Catal., 1986, 24, 85; DOI: https://doi.org/10.1016/S0166-9834(00)81259-2.

    Article  CAS  Google Scholar 

  53. L. Yanli, D. Xinmei, D. Zoufei, W. Jianli, Z. Ming, D. Yi, J. Long, C. Yaoqiang, Mol. Catal., 2020, 484, 110740; DOI: https://doi.org/10.1016/j.mcat.2019.110740.

    Article  Google Scholar 

  54. F. J. Mendez, M. G. Blanco, J. B. Rosas-Fernandez, J. A. García-Macedo, Micropor. Mesopor. Mater., 2020, 305, 110295; DOI: https://doi.org/10.1016/j.micromeso.2020.110295.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Rostovshchikova.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 7, pp. 1518–1532, July, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilina, M.I., Krotova, I.N., Maksimov, S.V. et al. Total and preferential CO oxidation on low-loaded Pt-HZSM-5 zeolites modified using laser electrodispersion. Russ Chem Bull 72, 1518–1532 (2023). https://doi.org/10.1007/s11172-023-3930-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3930-y

Key words

Navigation