Skip to main content
Log in

Methods of controlled radical polymerization in the synthesis of functional polymers and macromolecular structures

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

In a brief review, the main trends in the modern development of the concept of controlled radical polymerization were considered and illustrated by specific examples. The prospects for applying the methodology of controlled synthesis of macromolecular structures, as well as for obtaining industrially significant and high-tech polymers, including precursors for the production of carbon fiber and other popular polymer materials and composites, were analyzed. Particular emphasis was placed on the use of photocatalysis and nature-like technologies in the controlled synthesis of polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Shtaudinger, Europ. J. Inorg. Chem., 1920, 53, 1073; DOI: https://doi.org/10.1002/cber.19200530627.

    Google Scholar 

  2. Y. Gao, B. Newland, K. Matyjaszewski, H. Tai, W. Wang, Nature Rev. Chem., 2020, 4, 194; DOI: https://doi.org/10.1038/s41570-020-0170-7.

    Article  CAS  Google Scholar 

  3. Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies, Ed. by K. Matyjaszewski, H. Gao, B.S. Sumerlin, N. V. Tsarevsky, American Chemical Society, Washington, 2018.

    Google Scholar 

  4. D. F. Grishin, I. D. Grishin, Russ. Chem. Rev., 2021, 90, 231; DOI: https://doi.org/10.1070/RCR4964.

    Article  CAS  Google Scholar 

  5. N. Corrigan, K. Jung, G. Moad, G. Yawker, K. Matyjaszewski, C. Boyer, Prog. Polym. Sci., 2020, 111, 101311; DOI: https://doi.org/10.1016/j.progpolymsci.2020.101311.

    Article  CAS  Google Scholar 

  6. Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science, Ed. D. Gigmes, The Royal Society of Chemistry, UK, 2016.

    Google Scholar 

  7. E. V. Kolyakina, D. F. Grishin, Russ. Chem. Rev., 2009, 78, 535; DOI: https://doi.org/10.1070/RC2009v078n06ABEH004026.

    Article  CAS  Google Scholar 

  8. D. F. Grishin, L. L. Semenycheva, E. V. Kolyakina, Polym. Sci., Ser. A (Engl. Transl.), 1999, 41, 401.

    Google Scholar 

  9. E. V. Kolyakina, F. H. Shoipova, A. B. Alyeva, D. F. Grishin, Russ. Chem. Bull., 2021, 70, 1736; DOI: https://doi.org/10.1007/s11172-021-3278-0.

    Article  CAS  Google Scholar 

  10. F. L. Hatton, Polym. Chem., 2020, 11, 220; DOI: https://doi.org/10.1039/c9py01128e.

    Article  CAS  Google Scholar 

  11. G. Lopez, A. Thenappan, B. Améduri, ACS Macro Lett., 2015, 4, 16; DOI: https://doi.org/10.1021/mz5006712.

    Article  CAS  PubMed  Google Scholar 

  12. A. Debuigne, R. Poli, C. Jérôme, R. Jérôme, C. Detrembleur, Prog. Polym. Sci., 2009, 34, 211; DOI: https://doi.org/10.1016/j.progpolymsci.2008.11.003.

    Article  CAS  Google Scholar 

  13. M. Kamigaito, T. Ando, M. Sawamoto, Chem. Rev., 2001, 101, 3689; DOI: https://doi.org/10.1021/cr9901182.

    Article  CAS  PubMed  Google Scholar 

  14. I. D. Grishin, D. F. Grishin, Russ. Chem. Rev. (Engl. Transl.), 2008, 77, 633; DOI: https://doi.org/10.1070/RC2008v077n07ABEH003790.

    Article  CAS  Google Scholar 

  15. K. Matyjaszewski, J. Xia, Chem. Rev., 2001, 101, 2921; DOI: https://doi.org/10.1021/cr940534g.

    Article  CAS  PubMed  Google Scholar 

  16. I. D. Grishin, N. E. Kiseleva, D. F. Grishin, J. Polymer Res., 2015, 22, 209; DOI: https://doi.org/10.1007/s10965-015-0853-9.

    Article  Google Scholar 

  17. M. Ishio, M. Katsube, M. Ouchi, M. Sawamoto, Y. Inoue, Macromolecules, 2009, 42, 188; DOI: https://doi.org/10.1021/ma801762k.

    Article  CAS  Google Scholar 

  18. T. G. Ribelli, F. Lorandi, M. Fantin, K. Matyjaszewski, Macromol. Rapid Commun., 2019, 40, 1800616; DOI: https://doi.org/10.1002/marc.201800616.

    Article  Google Scholar 

  19. G. Zhu, L. Zhang, Z. Zhang, J. Zhu, Y. Tu, Z. Cheng, X. Zhu, Macromolecules, 2011, 44, 3233; DOI: https://doi.org/10.1021/ma102958y.

    Article  CAS  Google Scholar 

  20. M. Lamson, M. Kopeć, H. Ding, M. Zhong, K. Matyjaszewski, J. Polym. Sci. Part A: Polym. Chem., 2016, 54, 1961; DOI: https://doi.org/10.1002/pola.28055.

    Article  CAS  Google Scholar 

  21. I. D. Grishin, D. Y. Kurochkina, D. F. Grishin, Polym. Sci., Ser. B (Engl. Transl.), 2017, 59, 230; DOI: https://doi.org/10.1134/S1560090417030071.

    Article  CAS  Google Scholar 

  22. I. D. Grishin, N. E. Kiseleva, D. I. D’yachihin, I. T. Chizhevsky, D. F. Grishin, Russ. Chem. Bull., 2015, 64, 1942; DOI: https://doi.org/10.1007/s11172-015-1097-x.

    Article  CAS  Google Scholar 

  23. A. J. D. Magenau, Y. Kwak, K. Matyjaszewski, Macromolecules, 2010, 43, 9682; DOI: https://doi.org/10.1021/ma102051q.

    Article  CAS  Google Scholar 

  24. A. Anastasaki, V. Nikolaou, G. Nurumbetov, P. Wilson, K. Kempe, J. F. Quinn, T. P. Davis, M. R. Whittaker, D. M. Haddleton, Chem. Rev., 2016, 116, 835; DOI: https://doi.org/10.1021/acs.chemrev.5b00191.

    Article  CAS  PubMed  Google Scholar 

  25. S. Park, P. Chmielarz, A. Gennaro, K. Matyjaszewski, Angew. Chem., Int. Ed., 2015, 54, 2388; DOI: https://doi.org/10.1002/anie.201410598.

    Article  CAS  Google Scholar 

  26. D. F. Grishin, I. D. Grishin, Russ. Chem. Rev. (Engl. Transl.), 2015, 84, 712; DOI: https://doi.org/10.1070/RCR4476.

    Article  CAS  Google Scholar 

  27. S. A. Stakhi, D. F. Grishin, I. D. Grishin, J. Polymer Res., 2021, 28, 457; DOI: https://doi.org/10.1007/s10965-021-02821-6.

    Article  CAS  Google Scholar 

  28. I. D. Grishin, S. A. Stakhi, Sposob polucheniya sopolimera akrilonitrila [Method for Production of Acrylonitrile Copolymer]. Pat. RF, No. 2697882 dated 21.08.2019, Byul. Izobret. [Invention Bull.], 2019. No. 24 (in Russian).

  29. De M. Jung, H. Lee, Int. J. Mol. Sci., 2019, 20, 5582; DOI: https://doi.org/10.3390/ijms20225582.

    Article  PubMed  PubMed Central  Google Scholar 

  30. C. D. Hein, X. M. Liu, D. Wang, Pharm. Res., 2008, 25, 2216; DOI: https://doi.org/10.1007/s11095-008-9616-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. C. Jewett, C. R. Bertozzi, Chem. Soc. Rev., 2010, 39, 1272; DOI: https://doi.org/10.1039/B901970G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. E. H. H. Wong, C. Boyer, M. H. Stenzel, C. Barner-Kowollik, T. Junkers, Chem. Commun., 2010, 46, 1959; DOI: https://doi.org/10.1039/b925390d.

    Article  CAS  Google Scholar 

  33. E. V. Kolyakina, A. B. Alyeva, E. A. Zakharychev, D. F. Grishin, Russ. Chem. Bull., 2021, 70, 1997; DOI: https://doi.org/10.1007/s11172-021-3308-y.

    Article  CAS  Google Scholar 

  34. E. V. Kolyakina, F. Kh. Shoipova, D. F. Grishin, Polym. Sci., Ser. B (Engl. Transl.), 2022, 64, 359; DOI: https://doi.org/10.1134/S1560090422700257.

    Article  CAS  Google Scholar 

  35. S. C. Blackburn, K. D. Myers, E. S. Tillman, Polymer, 2015, 68, 284; DOI: https://doi.org/10.1016/j.polymer.2015.05.021.

    Article  CAS  Google Scholar 

  36. J. C. Theriot, C.-H. Lim, H. Yang, M. D. Ryan, C. B. Musgrave, G. M. Miyake, Science, 2016, 352, 1082; DOI: https://doi.org/10.1126/science.aaf3935.

    Article  CAS  PubMed  Google Scholar 

  37. E. H. Discekici, A. Anastasaki, J. R. de Alaniz, C. J. Hawker, Macromolecules, 2018, 51, 7421; DOI: https://doi.org/10.1021/acs.macromol.8b01401.

    Article  CAS  Google Scholar 

  38. N. J. Treat, H. Sprafke, J. W. Kramer, P. G. Clark, B. E. Barton, J. R. de Alaniz, B. P. Fors, C. J. Hawker, J. Am. Chem. Soc., 2014, 136, 16096; DOI: https://doi.org/10.1021/ja510389m.

    Article  CAS  PubMed  Google Scholar 

  39. S. Shanmugam, C. Boyer, Science, 2016, 352, 1053; DOI: https://doi.org/10.1126/science.aaf7465.

    Article  CAS  PubMed  Google Scholar 

  40. A. Allushi, C. Kutahya, C. Aydogan, J. Kreutzer, G. Yilmaz, Y. Yagci, Polym. Chem., 2017, 8, 1972; DOI: https://doi.org/10.1039/C7PY00114B.

    Article  CAS  Google Scholar 

  41. C. Kutahya, F. S. Aykac, G. Yilmaz, Y. Yagci, Polym. Chem., 2016, 7, 6094; DOI: https://doi.org/10.1039/C6PY01417H.

    Article  CAS  Google Scholar 

  42. D. F. Grishin, O. S. Lizyakina, L. B. Vaganova, A. A. Kaltenberg, I. D. Grishin, Iranian Polymer J., 2021, 30, 1117; DOI: https://doi.org/10.1007/s13726-021-00951-8.

    Article  CAS  Google Scholar 

  43. J. Xu, S. Shanmugam, H. T. Duong, C. Boyer, Polym. Chem., 2015, 6, 5615; DOI: https://doi.org/10.1039/C4PY01317D.

    Article  CAS  Google Scholar 

  44. A. Bagheri, C. W. A. Bainbridge, K. E. Engel, G. G. Qiao, J. Xu, C. Boyer, J. Jin, ACS Appl. Polym. Mat., 2020, 2, 782; DOI: https://doi.org/10.1021/acsapm.9b01076.

    Article  CAS  Google Scholar 

  45. J. Xu, S. Shanmugam, C. Boyer, ACS Macro Lett., 2015, 4, 926; DOI: https://doi.org/10.1021/acsmacrolett.5b00460.

    Article  CAS  PubMed  Google Scholar 

  46. S. Shanmugam, J. Xu, C. Boyer, Chem. Sci., 2015, 6, 1341; DOI: https://doi.org/10.1039/C4SC03342F.

    Article  CAS  PubMed  Google Scholar 

  47. J. Su, X. Liu, J. Hu, Q. You, Y. Cui, Y. Chen, Polym. Int., 2015, 64, 867; DOI: https://doi.org/10.1007/s10965-018-1459-9.

    Article  CAS  Google Scholar 

  48. I. D. Grishin, Polym. Sci. Ser. C (Engl. Transl.), 2022, 64, 82; DOI: https://doi.org/10.1134/S1811238222700035.

    Article  CAS  Google Scholar 

  49. G. Szczepaniak, M. Lagodzinska, S. Dadashi-Silab, A. Gorczynski, K. Matyjaszewski, Chem. Sci., 2020, 11, 8809; DOI: https://doi.org/10.1039/D0SC03179H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. E. Enciso, L. Fu, A. J. Russell, K. Matyjaszewski, Angew. Chem. Int. Ed. Engl., 2018, 57, 933; DOI: https://doi.org/10.1002/anie.201711105.

    Article  CAS  PubMed  Google Scholar 

  51. M. A. Zherebsov, E. R. Zhiganshina, N. A. Lenshina, R. S. Kovylin, E. V. Baranov, N. Yu. Shushunova, M. P. Shurygina, M. V. Arsenyev, S. A. Chesnokov, V. K. Cherkasov, Russ. Chem. Bull., 2021, 70, 780; DOI: https://doi.org/10.1007/s11172-021-3151-1.

    Article  Google Scholar 

  52. D. E. Votkina, M. Rolle, M. E. Trusova, J. Audran, C. R. A. Mark, P. V. Petunin, P. S. Postnikov, Russ. Chem. Bull., 2022, 71, 1549; DOI: https://doi.org/10.1007/s11172-022-3563-6.

    Article  CAS  Google Scholar 

  53. E. A. Kalinina, A. S. Vavilova, K. S. Systaeva, Yu. L. Kuznetsova, Russ. Chem. Bull., 2021, 70, 1775; DOI: https://doi.org/10.1007/s11172-021-3282-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Grishin.

Additional information

No human or animal subjects were used in this research.

Based on the materials of the XVIII International Research and Development Conference “Novel Polymeric Composites. Mikitaev Readings” (July 4–9, 2022; p. Elbrus, Kabardino-Balkarian Republic, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 6, pp. 1285–1298, June, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, D.F. Methods of controlled radical polymerization in the synthesis of functional polymers and macromolecular structures. Russ Chem Bull 72, 1285–1298 (2023). https://doi.org/10.1007/s11172-023-3904-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3904-0

Key words

Navigation