Skip to main content
Log in

Nuclear magnetic resonance study of the temperature dependence of paramagnetic chemical shifts of [Co(EDTA)]2− complexes in gelatin gel

  • Brief Communications
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

NMR spectroscopy was applied to study the temperature dependences of paramagnetic chemical shifts of the [Co(EDTA)]2− complex (1) in D2O solution and in 10% gelatin gel (as a model medium for human or animal tissues). The maximum temperature sensitivity of the chemical shifts d(δexp)/dT was found to be 0.64 ppm K−1 (in 10% gelatin gel). The half-width of the signals of the complex essentially depends on the solution viscosity and temperature, owing to the dipole contribution to the paramagnetic increase in the spin—spin relaxation rate. Complex 1 can be considered as a promising compound for the design of temperature-sensitive NMR probes for determining the local temperature in aqueous media and for advanced diagnosis of diseases using MRI technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. W. Zhang, Z. Y. Yang, S. P. Zhang, R. D. Yang, Transit. Met. Chem., 2006, 31, 333; DOI: https://doi.org/10.1007/s11243-005-6411-2.

    Article  CAS  Google Scholar 

  2. P. B. Tsitovich, J. M. Cox, J. B. Benedict, J. R. Morrow, Inorg. Chem., 2016, 55, 700; DOI: https://doi.org/10.1021/acs.inorgchem.5b02144.

    Article  CAS  PubMed  Google Scholar 

  3. P. B. Tsitovich, T. Y. Tittiris, J. M. Cox, J. B. Benedict, J. R. Morrow, Dalt. Trans., 2018, 47, 916; DOI: https://doi.org/10.1039/c7dt03812g.

    Article  CAS  Google Scholar 

  4. P. J. Burns, P. B. Tsitovich, J. R. Morrow, J. Chem. Educ., 2016, 93, 1115; DOI: https://doi.org/10.1021/acs.jchemed.5b00818.

    Article  CAS  Google Scholar 

  5. S. P. Babailov, P. V Dubovskii, E. N. Zapolotsky, Polyhedron, 2014, 79, 277; DOI: https://doi.org/10.1016/j.poly.2014.04.067.

    Article  CAS  Google Scholar 

  6. E. N. Zapolotsky, Y. Qu, S. P. Babailov, J. Incl. Phenom. Macrocycl. Chem., 2021, 1; DOI: https://doi.org/10.1007/s10847-021-01112-3.

  7. N. V. Scheglova, T. V. Popova, T. V. Smotrina, Russ. Chem. Bull., 2022, 71, 946; DOI: https://doi.org/10.1007/s11172-022-3495-1.

    Article  CAS  Google Scholar 

  8. V. K. Voronov, I. A. Ushakov, S. N. Adamovich, E. N. Oborina, Russ. Chem. Bull., 2021, 70, 2354; DOI: https://doi.org/10.1007/s11172-021-3352-7.

    Article  CAS  Google Scholar 

  9. N. M. Dyatlova, V. Ya. Temkina, K. I. Popov, Kom-pleksony i kompleksonaty metallov [Complexones and Metal Complexonates], Khimiya, Moscow, 1988 (in Russia).

    Google Scholar 

  10. B. G. Jenkins, R. B. Lauffer, Inorg. Chem., 1988, 27, 4730; DOI: https://doi.org/10.1021/ic00299a011.

    Article  CAS  Google Scholar 

  11. V. Jacques, J. F. Desreux, Inorg. Chem., 1994, 8, 4048; DOI: https://doi.org/10.1021/ic00096a033.

    Article  Google Scholar 

  12. S. Aime, M. Botta, M. Fasano, M. P. M. Marques, C. F. G. C. Geraldes, D. Pubanz, A. E. Merbach, Inorg. Chem., 1997, 36, 2059; DOI: https://doi.org/10.1021/ic961364o.

    Article  CAS  PubMed  Google Scholar 

  13. S. Aime, M. Botta, G. Ermondi, Inorg. Chem., 1992, 31, 4291; DOI: https://doi.org/10.1021/ic00047a016.

    Article  CAS  Google Scholar 

  14. S. P. Babailov, E. N. Zapolotsky, A. I. Kruppa, P. A. Stabnikov, I. A. Godovikov, E. V. Bocharov, E. S. Fomin, Inorg. Chim. Acta, 2019, 486, 340; DOI: https://doi.org/10.1016/j.ica.2018.10.044.

    Article  CAS  Google Scholar 

  15. H. K. F. Trübel, P. K. Maciejewski, J. H. Farber, F. Hyder, J. Appl. Physiol., 2003, 94, 1641; DOI: https://doi.org/10.1152/japplphysiol.00841.2002.

    Article  PubMed  Google Scholar 

  16. E. W. Stout, H. S. Gutowsky, J. Magn. Reson., 1976, 398, 389; DOI: https://doi.org/10.1016/0022-2364(76)90118-9.

    Google Scholar 

  17. H. N. Cheng, H. S. Gutowsky, J. Phys. Chem., 1978, 82, 914; DOI: https://doi.org/10.1021/j100497a015.

    Article  CAS  Google Scholar 

  18. S. P. Babailov, E. N. Zapolotsky, V. V. Kokovkin, O. G. Shakirova, I. V. Mironov, I. P. Chuikov, E. S. Fomin, Polyhedron, 2022, 212, 115611; DOI: https://doi.org/10.1016/j.poly.2021.115611.

    Article  CAS  Google Scholar 

  19. O. Y. Selyutina, V. E. Koshman, M. V. Zelikman, S. P. Babailov, BioMetals, 2022, 35, 629; DOI: https://doi.org/10.1007/s10534-022-00388-3.

    Article  CAS  PubMed  Google Scholar 

  20. Bruker Almanac, Karlsruhe, 2010.

  21. I. Bertini, C. Luchinat, Coord. Chem. Rev., 1996, 150, 29.

    Article  Google Scholar 

  22. J. Koehler, J. Meiler, Prog. Nucl. Magn. Reson. Spectrosc., 2011, 59, 360; DOI: https://doi.org/10.1016/j.pnmrs.2011.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. E. N. Zapolotsky, S. P. Babailov, J. Struct. Chem., 2021, 62, 1740; DOI: https://doi.org/10.1134/S002247662111010X.

    Article  CAS  Google Scholar 

  24. R. Z. Sagdeev, V. K. Voronov, A. V. Podoplelov, I. A. Ushakov, A. N. Chemezov, E. Yu. Fursova, S. V. Fokin, G. V. Romanenko, V. A. Reznikov, V. I. Ovcharenko, Russ. Chem. Bull., 2001, 50, 2078; DOI: https://doi.org/10.1023/A:1015036915105.

    Article  CAS  Google Scholar 

  25. S. P. Babailov, E. V. Peresypkina, Y. Journaux, K. E. Vostrikova, Sens. Actuators, B Chem., 2017, 239, 405; DOI: https://doi.org/10.1016/j.snb.2016.08.015.

    Article  CAS  Google Scholar 

  26. S. P. Babailov, Prog. Nucl. Magn. Reson. Spectrosc., 2008, 52, 1; DOI: https://doi.org/10.1016/j.pnmrs.2007.04.002.

    Article  CAS  Google Scholar 

  27. S. P. Babailov, E. N. Zapolotsky, Polyhedron, 2021, 194, 114908; DOI: https://doi.org/10.1016/j.poly.2020.114908.

    Article  CAS  Google Scholar 

  28. S. P. Babailov, E. N. Zapolotsky, Inorg. Chim. Acta, 2020, 517, 120153; DOI: https://doi.org/10.1016/j.ica.2020.120153.

    Article  Google Scholar 

  29. D. Coman, H. K. Trubel, F. Hyder, NMR Biomed., 2010, 23, 277; DOI: https://doi.org/10.1002/nbm.1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. P. Babailov, Sens. Actuators, B Chem., 2016, 233, 476; DOI: https://doi.org/10.1016/j.snb.2016.04.009.

    Article  CAS  Google Scholar 

  31. S. P. Babailov, L. D. Nikulina, J. Incl. Phenom. Macrocycl. Chem., 2005, 51, 103; DOI: https://doi.org/10.1007/s10847-004-4673-5.

    Article  CAS  Google Scholar 

  32. A. M. Panich, Magn. Reson. Mater. Physics, Biol. Med., 2022; DOI: https://doi.org/10.1007/s10334-022-01015-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Babailov.

Additional information

This study was supported by the Russian Science Foundation (Project No. 20-63-46026).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 5, pp. 1262–1267, May, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babailov, S.P., Zapolotsky, E.N. Nuclear magnetic resonance study of the temperature dependence of paramagnetic chemical shifts of [Co(EDTA)]2− complexes in gelatin gel. Russ Chem Bull 72, 1262–1267 (2023). https://doi.org/10.1007/s11172-023-3899-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3899-6

Key words

Navigation