Skip to main content
Log in

P*,S-Bidentate diamidophosphite based on 3-(phenylthiomethyl)phenol

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A new P*,S-bidentate diamidophosphite ligand 1, containing a stereogenic phosphorus atom as a part of the 1,3,2-diazaphospholidine ring, was synthesized based on 3-(phenylthiomethyl)phenol. Palladium catalysts on its basis demonstrated a high enantioselectivity in the allylic alkylation of (E)-1,3-diphenylallyl acetate with dimethyl malonate (76% ee), the amination with pyrrolidine (74% ee), and the alkylation of cinnamyl acetate with ethyl 2-oxocyclohexanecarboxylate (83% ee). The reaction of ligand 1 with [Pd(allyl)Cl]2 in the presence of AgBF4 afforded a mixture of cationic palladium complexes: chelate [Pd(allyl)1]BF4 and head-to-head binuclear complex [Pd(allyl)1]2(BF4)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Trost, G. Mata, Acc. Chem. Res., 2020, 53, 1293; DOI: https://doi.org/10.1021/acs.accounts.0c00152.

    Article  CAS  PubMed  Google Scholar 

  2. S. Lemouzy, L. Giordano, D. Herault, G. Buono, Eur. J. Org. Chem., 2020, 3351; DOI: https://doi.org/10.1002/ejoc.202000406.

  3. O. Vyhivskyi, A. Kudashev, T. Miyakoshi, O. Baudoin, Chem.-Eur. J., 2021, 27, 1231; DOI: https://doi.org/10.1002/chem.202003225.

    Article  CAS  PubMed  Google Scholar 

  4. F. Ye, Z. Xu, L.-W. Xu, Acc. Chem. Res., 2021, 54, 452; DOI: https://doi.org/10.1021/acs.accounts.0c00740.

    Article  CAS  PubMed  Google Scholar 

  5. L. Susse, B. M. Stoltz, Chem. Rev., 2021, 121, 4084; DOI: https://doi.org/10.1021/acs.chemrev.0c01115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. R. Connon, B. Roche, B. V. Rokade, P. J. Guiry, Chem. Rev., 2021, 121, 6373; DOI: https://doi.org/10.1021/acs.chemrev.0c00844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiral Ligands. Evolution of Ligand Libraries for Asymmetric Catalysis, Ed. M. Diéguez, Taylor & Francis Group, LLC, Boca Raton, 2021, 338 p.; DOI: https://doi.org/10.1201/9780367855734.

    Google Scholar 

  8. J. Margalef, M. Biosca, P. de la Cruz Sanchez, J. Faiges, O. Pamies, M. Dieguez, Coord. Chem. Rev., 2021, 446, 214120; DOI: https://doi.org/10.1016/j.ccr.2021.214120.

    Article  CAS  Google Scholar 

  9. J. Margalef, O. Pamies, M. A. Pericas, M. Dieguez, Chem. Commun., 2020, 56, 10795; DOI: https://doi.org/10.1039/D0CC04145A.

    Article  CAS  Google Scholar 

  10. M. T. Reetz, H. Oka, R. Goddard, Synthesis, 2003, 1809; DOI: https://doi.org/10.1055/s-2003-41036.

  11. V. N. Tsarev, S. E. Lyubimov, A. A. Shiryaev, S. V. Zheglov, O. G. Bondarev, V. A. Davankov, A. A. Kabro, S. K. Moiseev, V. N. Kalinin, K. N. Gavrilov, Eur. J. Org. Chem., 2004, 2004, 2214; DOI: https://doi.org/10.1002/ejoc.200300694.

    Article  Google Scholar 

  12. K. N. Gavrilov, S. V. Zheglov, E. A. Rastorguev, N. N. Groshkin, M. G. Maksimova, E. B. Benetsky, V. A. Davankov, M. T. Reetz, Adv. Synth. Catal., 2010, 352, 2599; DOI: https://doi.org/10.1002/adsc.201000325.

    Article  CAS  Google Scholar 

  13. B. M. Trost, T. M. Lam, M. A. Herbage, J. Am. Chem. Soc., 2013, 135, 2459; DOI: https://doi.org/10.1021/ja312351s.

    Article  CAS  PubMed  Google Scholar 

  14. M. J. Bravo, R. M. Ceder, G. Muller, M. Rocamora, Organometallics, 2013, 32, 2632; DOI: https://doi.org/10.1021/om400119q.

    Article  CAS  Google Scholar 

  15. M. Schmitkamp, W. Leitner, G. Franciò, Catal. Sci. Technol., 2013, 3, 589; DOI: https://doi.org/10.1039/C2CY20657A.

    Article  CAS  Google Scholar 

  16. C. Schmitz, W. Leitner, G. Franciò, Eur. J. Org. Chem., 2015, 6205; DOI: https://doi.org/10.1002/ejoc.201500767.

  17. M. J. Bravo, R. M. Ceder, A. Grabulosa, G. Muller, M. Rocamora, J. C. Bayón, D. Peral, Organometallics, 2015, 34, 3799; DOI: https://doi.org/10.1021/acs.organomet.5b00457.

    Article  CAS  Google Scholar 

  18. R. Murakami, K. Sano, T. Iwai, T. Taniguchi, K. Monde, M. Sawamura, Angew. Chem., Int. Ed., 2018, 57, 9465; DOI: https://doi.org/10.1002/anie.201802821.

    Article  CAS  Google Scholar 

  19. K. N. Gavrilov, I. S. Mikhel, S. V. Zheglov, V. K. Gavrilov, I. V. Chuchelkin, I. D. Firsin, K. P. Birin, I. S. Pytskii, K. A. Paseshnichenko, V. A. Tafeenko, V. V. Chernyshev, A. A. Shiryaev, Org. Chem. Front., 2019, 6, 1637; DOI: https://doi.org/10.1039/c9qo00237e.

    Article  CAS  Google Scholar 

  20. B. M. Trost, Z. Zuo, Y. Wang, Org. Lett., 2021, 23, 979; DOI: https://doi.org/10.1021/acs.orglett.0c04169.

    Article  CAS  PubMed  Google Scholar 

  21. K. N. Gavrilov, S. V. Zheglov, V. K. Gavrilov, I. D. Firsin, M. G. Maksimova, Russ. Chem. Bull., 2019, 68, 1376; DOI: https://doi.org/10.1007/s11172-019-2564-6.

    Article  CAS  Google Scholar 

  22. K. N. Gavrilov, I. V. Chuchelkin, V. K. Gavrilov, S. V. Zheglov, I. D. Firsin, V. M. Trunina, A. V. Maximychev, A. M. Perepukhov, Russ. Chem. Bull., 2021, 70, 336; DOI: https://doi.org/10.1007/s11172-021-3090-x.

    Article  CAS  Google Scholar 

  23. K. N. Gavrilov, I. V. Chuchelkin, S. V. Zheglov, I. D. Firsin, V. S. Zimarev, V. K. Gavrilov, A. V. Maximychev, A. M. Perepukhov, N. S. Goulioukina, Mendeleev Commun., 2020, 30, 31; DOI: https://doi.org/10.1016/j.mencom.2020.01.010.

    Article  CAS  Google Scholar 

  24. I. V. Chuchelkin, K. N. Gavrilov, N. E. Borisova, A. M. Perepukhov, A. V. Maximychev, S. V. Zheglov, V. K. Gavrilov, I. D. Firsin, V. S. Zimarev, I. S. Mikhel, V. A. Tafeenko, E. V. Murashova, V. V. Chernyshev, N. S. Goulioukina, Dalton Trans., 2020, 49, 5625; DOI: https://doi.org/10.1039/D0DT00741B.

    Article  CAS  PubMed  Google Scholar 

  25. I. V. Chuchelkin, K. N. Gavrilov, V. K. Gavrilov, S. V. Zheglov, I. D. Firsin, A. M. Perepukhov, A. V. Maximychev, N. E. Borisova, I. A. Zamilatskov, V. S. Tyurin, C. Dejoie, V. V. Chernyshev, V. S. Zimarev, N. S. Goulioukina, Organometallics, 2021, 40, 3645; DOI: https://doi.org/10.1021/acs.organomet.1c00491.

    Article  CAS  Google Scholar 

  26. K. N. Gavrilov, I. V. Chuchelkin, V. K. Gavrilov, S. V. Zheglov, I. D. Firsin, V. M. Trunina, I. A. Zamilatskov, V. S. Tyurin, V. A. Tafeenko, V. V. Chernyshev, V. S. Zimarev, N. S. Goulioukina, New J. Chem., 2022, 46, 1751; DOI: https://doi.org/10.1039/d1nj05143a.

    Article  CAS  Google Scholar 

  27. Z. Lu, S. Ma, Angew. Chem., Int. Ed., 2008, 47, 258; DOI: https://doi.org/10.1002/anie.200605113.

    Article  CAS  Google Scholar 

  28. T. Nemoto, Y. Hamada, Tetrahedron, 2011, 67, 667; DOI: https://doi.org/10.1016/j.tet.2010.11.069.

    Article  CAS  Google Scholar 

  29. Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis, Ed. U. Kazmaier, Springer-Verlag, Berlin—Heidelberg, 2012, XII, 348 pp.; DOI: https://doi.org/10.1007/978-3-642-22749-3.

    Google Scholar 

  30. R. L. Grange, E. A. Clizbe, P. A. Evans, Synthesis, 2016, 48, 2911; DOI: https://doi.org/10.1055/s-0035-1562090.

    Article  CAS  Google Scholar 

  31. O. Pamies, J. Margalef, S. Canellas, J. James, E. Judge, P. J. Guiry, C. Moberg, J.-E. Backvall, A. Pfaltz, M. A. Pericas, M. Dieguez, Chem. Rev., 2021, 121, 4373; DOI: https://doi.org/10.1021/acs.chemrev.0c00736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. M. Brunel, T. Constantieux, G. Buono, J. Org. Chem., 1999, 64, 8940; DOI: https://doi.org/10.1021/jo990205u.

    Article  CAS  PubMed  Google Scholar 

  33. K. Barta, M. Holscher, G. Francio, W. Leitner, Eur. J. Org. Chem., 2009, 4102; DOI: https://doi.org/10.1002/ejoc.200900477.

  34. J. Margalef, C. Borràs, S. Alegre, E. Alberico, O. Pàmies, M. Diéguez, ChemCatChem, 2019, 11, 2142; DOI: https://doi.org/10.1002/cctc.201900132.

    Article  CAS  Google Scholar 

  35. W. Zhang, M. Shi, Tetrahedron: Asymmetry, 2004, 15, 3467; DOI: https://doi.org/10.1016/j.tetasy.2004.09.027.

    Article  CAS  Google Scholar 

  36. P. Barbaro, A. Currao, J. Herrmann, R. Nesper, P. S. Pregosin, R. Salzmann, Organometallics, 1996, 15, 1879; DOI: https://doi.org/10.1021/om9509204.

    Article  CAS  Google Scholar 

  37. J. Margalef, C. Borràs, S. Alegre, O. Pàmies, M. Diéguez, Dalton Trans., 2019, 48, 12632; DOI: https://doi.org/10.1039/C9DT02338K.

    Article  CAS  PubMed  Google Scholar 

  38. S. K. Mandal, G. A. N. Gowda, S. S. Krishnamurthy, C. Zheng, S. Li, N. S. Hosmane, J. Organomet. Chem., 2003, 676, 22; DOI: https://doi.org/10.1016/S0022-328X(03)00227-4.

    Article  CAS  Google Scholar 

  39. J. Herrmann, P. S. Pregosin, R. Salzmann, Organometallics, 1995, 14, 3311; DOI: https://doi.org/10.1021/om00007a035.

    Article  CAS  Google Scholar 

  40. P. Clavero, A. Grabulosa, M. Rocamora, G. Muller, M. Font-Bardia, Eur. J. Inorg. Chem., 2016, 4216; DOI: https://doi.org/10.1002/ejic.201600608.

  41. E. B. Benetskiy, C. Bolm, Tetrahedron: Asymmetry, 2011, 22, 373; DOI: https://doi.org/10.1016/j.tetasy.2011.02.005.

    Article  CAS  Google Scholar 

  42. K. E. Thiesen, K. Maitra, M. M. Olmstead, S. Attar, Organometallics, 2010, 29, 6334; DOI: https://doi.org/10.1021/om100741m.

    Article  CAS  Google Scholar 

  43. M. Ramillien, N. Vanthuyne, M. Jean, D. Gheraseb, M. Giorgic, J.-V. Naubronc, P. Piras, C. Roussel, J. Chromatogr., Part A, 2012, 1269, 82; DOI: https://doi.org/10.1016/j.chroma.2012.09.025.

    Article  CAS  Google Scholar 

  44. K. N. Gavrilov, A. A. Shiryaev, S. V. Zheglov, V. K. Gavrilov, N. N. Groshkin, M. G. Maksimova, A. N. Volov, I. A. Zamilatskov, Tetrahedron, 2014, 70, 616; DOI: https://doi.org/10.1016/j.tet.2013.12.006.

    Article  CAS  Google Scholar 

  45. T. Nemoto, T. Matsumoto, T. Masuda, T. Hitomi, K. Hatano, Y. Hamada, J. Am. Chem. Soc., 2004, 126, 3690; DOI: https://doi.org/10.1021/ja031792a.

    Article  CAS  PubMed  Google Scholar 

  46. T. Nemoto, T. Masuda, T. Matsumoto, Y. Hamada, J. Org. Chem., 2005, 70, 7172; DOI: https://doi.org/10.1021/jo050800y.

    Article  CAS  PubMed  Google Scholar 

  47. A. A. Zagidullin, E. S. Oshchepkova, I. V. Chuchelkin, S. A. Kondrashova, V. A. Miluykov, Sh. K. Latypov, K. N. Gavrilov, E. Hey-Hawkins, Dalton Trans., 2019, 48, 4677; DOI: https://doi.org/10.1039/C9DT00443B.

    Article  CAS  PubMed  Google Scholar 

  48. Y. Liu, S.-J. Han, W.-Bo Liu, B. M. Stoltz, Acc. Chem. Res., 2015, 48, 740; DOI: https://doi.org/10.1021/ar5004658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. R. V. Lebedev, S. K. Moiseev, O. G. Bondarev, M. M. Il’in, K. N. Gavrilov, V. N. Kalinin, Russ. Chem. Bull., 2002, 51, 513; DOI: https://doi.org/10.1023/A:1015572605520.

    Article  CAS  Google Scholar 

  50. S. A. Durakov, R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2021, 70, 1290; DOI: https://doi.org/10.1007/s11172-021-3213-4.

    Article  CAS  Google Scholar 

  51. R. S. Shamsiev, K. T. Egiazaryan, V. R. Flid, Russ. Chem. Bull., 2022, 71, 905; DOI: https://doi.org/10.1007/s11172-022-3489-z.

    Article  CAS  Google Scholar 

  52. M. Asay, D. Morales-Morales, Dalton Trans., 2015, 44, 17432; DOI: https://doi.org/10.1039/C5DT02295A.

    Article  CAS  PubMed  Google Scholar 

  53. Y. Xiang, Q. Ge, S. Wu, X. Zheng, Z. Yang, RSC Adv., 2020, 10, 9563; DOI: https://doi.org/10.1039/D0RA00377H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. G. Barbiero, A. S. Hay, J. Polym. Sci., Part A, 1996, 34, 507; DOI: https://doi.org/10.1002/(SICI)1099-0518(199602)34:3<507::AID-POLA21>3.0.CO;2-S.

    Article  CAS  Google Scholar 

  55. P. R. Auburn, P. B. Mackenzie, B. Bosnich, J. Am. Chem. Soc., 1985, 107, 2033; DOI: https://doi.org/10.1021/ja00293a038.

    Article  CAS  Google Scholar 

  56. S. Breeden, M. Wills, J. Org. Chem., 1999, 64, 9735; DOI: https://doi.org/10.1021/jo9912101.

    Article  CAS  Google Scholar 

  57. L.-Y. Mei, Z.-L. Yuan, M. Shi, Organometallics, 2011, 30, 6466; DOI: https://doi.org/10.1021/om2008309.

    Article  CAS  Google Scholar 

  58. D. Smyth, H. Tye, C. Eldred, N. W. Alcock, M. Wills, J. Chem. Soc., Perkin Trans. 1, 2001, 2840; DOI: https://doi.org/10.1039/B106399P.

  59. J. Chen, F. Lang, D. Li, L. Cun, J. Zhu, J. Deng, J. Liao, Tetrahedron: Asymmetry, 2009, 20, 1953; DOI: https://doi.org/10.1016/j.tetasy.2009.07.041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Gavrilov.

Additional information

This work was financially supported by the Russian Science Foundation (project No. 19-13-00197).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 5, pp. 1251–1258, May, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, K.N., Chuchelkin, I.V., Gavrilov, V.K. et al. P*,S-Bidentate diamidophosphite based on 3-(phenylthiomethyl)phenol. Russ Chem Bull 72, 1251–1258 (2023). https://doi.org/10.1007/s11172-023-3897-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3897-8

Key words

Navigation