Skip to main content
Log in

Efficient method for fabrication of reusable printed organic electrochemical transistors for liquid sensors based on the complex of poly(3,4-ethylenedioxythiophene) with poly(styrenesulfonic acid)

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The optimal composition of PEDOT:PSS-based ink for inkjet printing of the semiconductor layer for liquid sensors is determined. It was proposed to modify silicon substrates with (3-aminopropyl)triethoxysilane to improve the adhesion of the printed semiconductor layer. This made it possible to fabricate organic electrochemical transistors that demonstrated stable operation under reusable conditions in physiological solutions with high ionic strength without significant loss of performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kim, C. M. Kim, Y.-J. Son, J. Y. Choi, R. K. Siegenthaler, Y. Lee, T.-H. Jang, J. Song, H. Kang, C. A. Kaiser, H. H. Park, Nat. Commun., 2018, 9, 1; DOI: https://doi.org/10.1038/s41467-018-07285-9.

    Article  Google Scholar 

  2. R. A. Picca, K. Manoli, E. Macchia, A. Tricase, C. Di Franco, G. Scamarcio, N. Cioffi, L. Torsi, Front. Chem., 2019, 7, 667; DOI: https://doi.org/10.3389/fchem.2019.00667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. W. Lövenich, Polym. Sci., Ser. C, 2014, 56, 135; DOI: https://doi.org/10.1134/S1811238214010068.

    Article  Google Scholar 

  4. K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, D. Du, F. H. Isikgor, J. Ouyang, J. Mater. Sci. Mater. Electron., 2015, 26, 4438; DOI: https://doi.org/10.1007/s10854-015-2895-5.

    Article  CAS  Google Scholar 

  5. J. Liao, H. Si, X. Zhang, S. Lin, Sensors, 2019, 19, 218; DOI: https://doi.org/10.3390/s19020218.

    Article  PubMed  PubMed Central  Google Scholar 

  6. P. A. Shaposhnik, S. A. Zapunidi, M. V. Shestakov, E. V. Agina, S. A. Ponomarenko, Rus. Chem. Rev., 2020, 89, 1483; DOI: https://doi.org/10.1070/RCR4973.

    Article  CAS  Google Scholar 

  7. J. Fan, S. S. Rezaie, M. Facchini-Rakovich, D. Gudi, C. Montemagno, M. Gupta, Org. Electron., 2019, 66, 148; DOI: https://doi.org/10.1016/j.orgel.2018.12.013.

    Article  CAS  Google Scholar 

  8. M. Nishinaka, H. Jinno, Y. Jimbo, S. Lee, J. Wang, W. Lee, T. Yokota, T. Someya, Small Structures, 2021, 2, 2000088; DOI: https://doi.org/10.1002/sstr.202000088.

    Article  CAS  Google Scholar 

  9. G. Tarabella, D. Vurro, S. Lai, P. D’Angelo, L. Ascari, S. Iannotta, Flex. Print. Electron., 2020, 5, 014005; DOI: https://doi.org/10.1088/2058-8585/ab61c4.

    Article  CAS  Google Scholar 

  10. Y. Jang, J. Jo, D.-S. Kim, J. Polym. Sci., Part B, 2011, 49, 1590; DOI: https://doi.org/10.1002/polb.22347.

    Article  CAS  Google Scholar 

  11. S. Demuru, A. Marette, W. Kooli, P. Junier, D. Briand, 20th Int. Conf.Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (Transducers & Eurosensors XXXIII)”, 2019, 2519; DOI: https://doi.org/10.1109/TRANSDUCERS.2019.8808309.

  12. A. Al-Halhouli, H. Qitouqa, A. Alashqar, J. Abu-Khalaf, Sens. Rev., 2018, 38, 438; DOI: https://doi.org/10.1108/SR-07-2017-0126.

    Article  Google Scholar 

  13. Z. Tan, H. Li, Y. Huang, X. Gong, J. Qi, J. Li, X. Chen, D. Ji, W. Lv, L. Li, W. Hu, Compos. Part A, 2021, 143, 106299; DOI: https://doi.org/10.1016/j.compositesa.2021.106299.

    Article  CAS  Google Scholar 

  14. Y.-I. Lee, Y.-H. Choa, J. Mater. Chem., 2012, 22, 12517; DOI: https://doi.org/10.1039/C2JM31381B.

    Article  CAS  Google Scholar 

  15. Plasma Surface Modification of Polymers: Relevance to Adhesion, Eds M. Strobel, C. S. Lyons, K. L. Mittal, VSP, Zeist, Netherlands, 1994, 290 pp.

    Google Scholar 

  16. N. Herzer, C. Haensch, S. Hoeppener, U. S. Schubert, Langmuir, 2010, 26, 8358; DOI: https://doi.org/10.1021/la9047837.

    Article  CAS  PubMed  Google Scholar 

  17. Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin, Z. Bao, J. Am. Chem. Soc., 2009, 131, 9396; DOI: https://doi.org/10.1021/ja9029957.

    Article  CAS  PubMed  Google Scholar 

  18. A. Virkar, S. Mannsfeld, J. H. Oh, M. F. Toney, Y. H. Tan, G. Y. Liu, J. C. Scott, R. Miller, Z. Bao, Adv. Funct. Mater., 2009, 19, 1962; DOI: https://doi.org/10.1002/adfm.200801727.

    Article  CAS  Google Scholar 

  19. E. V. Agina, A. S. Sizov, M. Yu. Yablokov, O. V. Borshchev, A. A. Bessonov, M. N. Kirikova, M. J. A. Bailey, S. A. Ponomarenko, ACS Appl. Mater. Interfaces, 2015, 7, 11755; DOI: https://doi.org/10.1021/am508905t.

    Article  CAS  PubMed  Google Scholar 

  20. X. Strakosas, M. Bongo, R. M. Owens, J. Appl. Polym. Sci., 2015, 132, 15; DOI: https://doi.org/10.1002/app.41735.

    Article  Google Scholar 

  21. B. Derby, Annu. Rev. Mater. Res., 2010, 40, 395; DOI: https://doi.org/10.1146/annurev-matsci-070909-104502.

    Article  CAS  Google Scholar 

  22. V. P. Chekusova, A. A. Trul, E. V. Agina, S. A. Ponomarenko, Russ. Chem. Bull., 2022, 71, 1290; DOI: https://doi.org/10.1007/s11172-022-3533-z.

    Article  CAS  Google Scholar 

  23. K. Holmberg, B. Jönsson, B. Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solutions, 2003, J. Wiley and Sons, Chichester.

    Google Scholar 

  24. F. Greco, A. Zucca, S. Taccola, A. Menciassi, T. Fujie, H. Haniuda, S. Takeoka, P. Dario, V. Mattoli, Soft Matter, 2011, 7, 10642; DOI: https://doi.org/10.1039/C1SM06174G.

    Article  CAS  Google Scholar 

  25. E. Yu. Poimanova, P. A. Shaposhnik, D. S. Anisimov, E. G. Zavyalova, A. A. Trul, M. S. Skorotetcky, O. V. Borshcev, D. Z. Vinnitskiy, M. S. Polinskaya, V. B. Krylov, N. E. Nifantiev, E. V. Agina, S. A. Ponomarenko, ACS Appl. Mater. Interfaces, 2022, 14, 16462; DOI: https://doi.org/10.1021/acsami.1c24109.

    Article  CAS  PubMed  Google Scholar 

  26. E. Yu. Poimanova, P. A. Shaposhnik, P. N. Karaman, D. S. Anisimov, M. S. Skorotetcky, M. S. Polinskaya, O. V. Borshchev, E. V. Agina, S. A. Ponomarenko, Russ. Chem. Bull., 2022, 71, 2116; DOI: https://doi.org/10.1007/s11172-022-3635-7.

    Article  Google Scholar 

  27. F. Decataldo, M. Barbalinardo, M. Tessarolo, V. Vurro, M. Calienni, D. Gentili, F. Valle, M. Cavallini, B. Fraboni, Adv. Mater. Technol., 2019, 4, 1900207; DOI: https://doi.org/10.1002/admt.201900207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ponomarenko.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 19-73-30028, fabrication and studies of printed sensor). The sample morphology studies were financially supported by the Minstry of Science and Higher Education of the Russian Federation (topic FFSM-2022-0001) and carried out using the equipment of the Center for Collective Use “Polymer Reseach Center” at the Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 5, pp. 1130–1138, May, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titova, Y.O., Poimanova, E.Y., Trul, A.A. et al. Efficient method for fabrication of reusable printed organic electrochemical transistors for liquid sensors based on the complex of poly(3,4-ethylenedioxythiophene) with poly(styrenesulfonic acid). Russ Chem Bull 72, 1130–1138 (2023). https://doi.org/10.1007/s11172-023-3881-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3881-3

Key words

Navigation