Skip to main content
Log in

Microwave and ultrasonic radiation-activated synthesis and luminescent properties of nanopowder YVO4: Bi3+, Eu3+

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Microwave and ultrasonic radiation-activated synthesis of YVO4-based phosphors doped with Bi3+ and Eu3+ is proposed. XRD and LXRSMA results confirm the incorporation of Bi3+ and Eu3+ ions into the YVO4 crystal lattice. The particles of the obtained powders have a pronounced spherical shape with a predominant diameter in the range of 20–40 nm. For samples co-doped with Bi3+ and Eu3+, the band at λ = 616–620 nm (5D07F 3+2 ) is the strongest in comparison with the other bands of the series 5D07FJ (J = 0, 1, 2, 3, 4), which indicates that the position of Eu3+ within the YVO4 matrix is considerably deviated from the centrally symmetric one. The Bi3+ ions have an effective sensitizing effect on Eu3+ radiation due to charge transfer from the 6s orbital of Bi3+ to the 3d orbital of V5+ and then to the Eu3+ ion. The efficiency of energy transfer is about 50% for sample YVO4: Bi3+(5%), Eu3+(0.5%) and almost 100% for YVO4: Bi3+(0.5%), Eu3+(5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Rajendra, C. Pandurangappa, Appl. Phys. A, 2010, 125, 702; DOI: https://doi.org/10.1007/s00339-019-2990-1.

    Article  Google Scholar 

  2. K. A. Koparkar, S. K. Omanwar, J. Lumin., 2016, 175, 176; DOI: https://doi.org/10.1016/j.jlumin.2016.02.041.

    Article  CAS  Google Scholar 

  3. Y. L. Xu, B. Teng, D. Zhong, L. Yang, J. He, Y. Meng, M. Zhu, J. Tang, J. Mater. Sci. — Mater. Electron., 2018, 29, 714; DOI: https://doi.org/10.1007/s10854-017-7964-5.

    Article  CAS  Google Scholar 

  4. V. Vitola, V. Lahti, I. Bite, A. Spustaka, D. Millers, M. Lastusaari, L. Petit, K. Smits, Scripta Mater., 2021, 190, 86; DOI: https://doi.org/10.1016/j.scriptamat.2020.08.023.

    Article  CAS  Google Scholar 

  5. A. M. Lunev, Yu. A. Belousov, Russ. Chem. Bull., 2022, 71, 825; DOI: https://doi.org/10.1007/s11172-022-3485-3.

    Article  CAS  Google Scholar 

  6. C. Wu, Y. Wang, W. Jie, J. Alloys Compd., 2007, 436, 383; DOI: https://doi.org/10.1016/j.jallcom.2006.07.056.

    Article  CAS  Google Scholar 

  7. J. Huang, L. Tang, N. Chen, G. Du, Mater., 2019, 12, 3830; DOI: https://doi.org/10.3390/ma12233830.

    Article  CAS  Google Scholar 

  8. N. Chander, A. F. Khan, P. S. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, V. K. Komarala, Appl. Phys. Lett., 2014, 105, 033904; DOI: https://doi.org/10.1063/1.4891181.

    Article  Google Scholar 

  9. M. La, N. Li, R. Sha, S. Bao, P. Jin, Scripta Mater., 2018, 142, 36; DOI: https://doi.org/10.1016/j.spmi.2016.02.038.

    Article  CAS  Google Scholar 

  10. M. Runowski, J. Marciniak, T. Grzyb, D. Przybylska, A. Shyichuk, B. Barszcz, A. Katrusiak, S. Lis, Nanoscale, 2017, 9, 16030; DOI: https://doi.org/10.1039/C7NR04353H.

    Article  CAS  PubMed  Google Scholar 

  11. M. Runowski, A. Shyichuk, A. Tymiński, T. Grzyb, V. Lavín, S. Lis, ACS Appl. Mater. Interfaces, 2018, 10, 17269; DOI: https://doi.org/10.1021/acsami.8b02853.

    Article  CAS  PubMed  Google Scholar 

  12. G. Neeraja Rani, J. Shankar, J. Anjaiah, B. Mamatha, N. H. Ayachit, AIP Conf. Proc., 2019, 2162, 020117; DOI: https://doi.org/10.1063/1.5130327.

    Article  Google Scholar 

  13. D. O. Sagdeev, R. R. Shamilov, V. K. Voronkova, A. A. Sukhanov, Y. G. Galyametdinov, Russ. Chem. Bull., 2020, 69, 1749; DOI: https://doi.org/10.1007/s11172-020-2958-5.

    Article  CAS  Google Scholar 

  14. D. Errandonea, A. B. Garg, Prog. Mater. Sci., 2018, 97, 123; DOI: https://doi.org/10.1016/j.pmatsci.2018.04.004.

    Article  CAS  Google Scholar 

  15. P. A. Apanasevich, A. A. Kananovich, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, J. Appl. Spectr., 2011, 78, 43–49; DOI: https://doi.org/10.1007/s10812-011-9423-z.

    Article  CAS  Google Scholar 

  16. I. E. Kolesnikov, D. V. Tolstikova, A. V. Kurochkin, S. A. Pulkin, A. A. Manshina, M. D. Mikhailov, J. Luminescence, 2014, 158, 469; DOI: https://doi.org/10.1016/j.jlumin.2014.10.024.

    Article  Google Scholar 

  17. K. Park, S. W. Nam, M. H. Heo, Ceram. Int., 2010, 36, 1541. DOI: https://doi.org/10.1016/j.ceramint.2010.02.019.

    Article  CAS  Google Scholar 

  18. K. R. Bajgiran, P. Darapaneni, A. T. Melvin, J. A. Dorman, J. Phys. Chem., 2019, 123, 13027; DOI: https://doi.org/10.1021/acs.jpcc.9b01872.

    Google Scholar 

  19. Y. Zheng, L. Deng, J. Li, T. Jia, J. Qiu, Z. Sun, S. Zhang, Photonics Res., 2019, 7, 486; DOI: https://doi.org/10.1364/PRJ.7.000486.

    Article  CAS  Google Scholar 

  20. S. M. Rafiaei, M. Shokouhimehr, Mater. Res. Express, 2018, 5, 116208; DOI: https://doi.org/10.1088/2053-1591/aadd89.

    Article  Google Scholar 

  21. B. V. Slobodin, A. V. Ishchenko, R. F. Samigullina, B. V. Shul’gin, M. A. Melkozerova, E. V. Zabolotskaya, Inorg. Mater., 2012, 48, 520; DOI: https://doi.org/10.1134/S0020168512050196.

    Article  CAS  Google Scholar 

  22. A. Krasnikov, V. Tsiumra, L. Vasylechko, S. Zazubovich, Y. Zhydachevskyy, J. Lumin., 2019, 212, 52; DOI: https://doi.org/10.1016/j.jlumin.2019.04.019.

    Article  CAS  Google Scholar 

  23. H. Fang, X. Wei, S. Zhou, X. Li, Y. Chen, C.-K. Duan, M. Yin, RSC Adv., 2017, 17, 10200; DOI: https://doi.org/10.1039/C6RA27971F.

    Article  Google Scholar 

  24. Y. Yu, J. Niu, W. Li, H. Liu, M. Wang, Anal. Methods, 2018, 10, 359; DOI: https://doi.org/10.1039/C7AY02281F.

    Article  CAS  Google Scholar 

  25. B. V. Slobodin, A. V. Ishchenko, R. F. Samigullina, V. V. Yagodin, B. V. Shul’gin, Inorg. Mater., 2014, 50, 179; DOI: https://doi.org/10.1134/S0020168514020150.

    Article  CAS  Google Scholar 

  26. W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, X. Chen, Phys. Chem. Chem. Phys., 2012, 19, 6974; DOI: https://doi.org/10.1039/C2CP24044K.

    Article  Google Scholar 

  27. R. S. Ningthoujam, A. Sharma, K. S. Sharma, K. C. Barick, P. A. Hassan, R. K. Vatsa, RSC Adv., 2015, 5, 68234: DOI: https://doi.org/10.1039/C5RA11587F.

    Article  CAS  Google Scholar 

  28. Q. Zhu, Z. Xu, Z. Wang, X. Wang, X. Li, X. Sun, J.-G. Li, CrystEngComm., 2018, 23, 3187; DOI: https://doi.org/10.1039/C8CE00365C.

    Article  Google Scholar 

  29. A. V. Ishchenko, K. V. Ivanovskikh, I. A. Weinstein, R. F. Samigullina, V. V. Platonov, Rad. Measurements, 2019, 124, 48; DOI: https://doi.org/10.1016/j.radmeas.2019.03.003.

    Article  CAS  Google Scholar 

  30. J. Wang, Y. Xu, M. Hojamberdiev, J. Alloys Compd., 2009, 481, 896; DOI: https://doi.org/10.1016/j.jallcom.2009.03.139.

    Article  CAS  Google Scholar 

  31. H. Lai, B. Chen, W. Xu, Y. Xie, X. Wang, W. Di, Mater. Lett., 2006, 60, 1341; DOI: https://doi.org/10.1016/j.matlet.2005.11.051.

    Article  CAS  Google Scholar 

  32. A. Dwivedi, E. Rai, D. Kumar, S. B. Rai, ACS Omega, 2019, 4, 6903; DOI: https://doi.org/10.1021/acsomega.8b03606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J.-G. Li, Z. Wang, Q. Zhu, Z. Xu, X. Wang, B.-N. Kim, X. Li, X. Sun, J. Am. Ceram. Soc., 2018, 101, 4519; DOI: https://doi.org/10.1111/jace.15811.

    Article  CAS  Google Scholar 

  34. H. Zhang, X. Fu, S. Niu, G. Sun, Q. Xin, J. Solid State Chem., 2004, 177, 2649; DOI: https://doi.org/10.1016/j.jssc.2004.04.037.

    Article  CAS  Google Scholar 

  35. M. Yu, J. Lin, J. Fang, Chem. Mater., 2005, 17, 1783; DOI: https://doi.org/10.1021/cm0479537.

    Article  CAS  Google Scholar 

  36. Yu. A. Dolinskaya, I. E. Kolesnikov, A. V. Kurochkin, A. A. Man’shina, M. D. Mikhailov, A. V. Semencha, Glass. Phys. Chem., 2013, 39, 308; DOI: https://doi.org/10.1134/S1087659613030061.

    Article  CAS  Google Scholar 

  37. M. Saltarelli, P. P. Luz, M. G. Matos, E. H. de Faria, K. J. Ciuffi, P. S. Calefi, L. A. Rocha, E. J. Nassar, J. Fluoresc., 2012, 22, 899; DOI: https://doi.org/10.1007/s10895-011-1028-7.

    Article  CAS  PubMed  Google Scholar 

  38. J. Huang, R. Gao, Z. Lu, D. Qian, W. Li, B. Huang, X. He, Opt. Mater., 2010, 32, 857; DOI: https://doi.org/10.1016/j.optmat.2009.12.011.

    Article  CAS  Google Scholar 

  39. H. Zhu, X. Li, Y. Liu, J. Chen, L. Gao, J. Chen, W. Lin, Y. Li, H. Chi, Mater. Res. Express, 2019, 6, 086218; DOI: https://doi.org/10.1088/2053-1591/ab24fb.

    Article  CAS  Google Scholar 

  40. Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, J. Lin, Inorg. Chem., 2010, 49, 6706; DOI: https://doi.org/10.1021/ic100953m.

    Article  CAS  PubMed  Google Scholar 

  41. T. Taniguchi, T. Watanabe, K. Katsumata, K. Okada, N. Matsushita, J. Phys. Chem. C, 2010, 114, 3763; DOI: https://doi.org/10.1021/jp908959t.

    Article  CAS  Google Scholar 

  42. Y. A. Dolinskaya, I. E. Kolesnikov, A. V. Kurochkin, A. A. Man’sina, M. D. Mikhailov, A. V. Semencha, Phys. Chem. Glasses, 2013, 39, 455; DOI: https://doi.org/10.1134/S1087659613030061.

    Google Scholar 

  43. J. Shao, J. Yan, X. Li, S. Li, T. Hu, Dyes Pigm., 2019, 160, 555; https://doi.org/10.1016/j.dyepig.2018.08.033.

    Article  CAS  Google Scholar 

  44. Z. Yahiaoui, M. A. Hassairi, M. Dammak, E. Cavalli, J. Alloys and Com., 2018, 763, 56; DOI: https://doi.org/10.1016/j.jallcom.2018.05.317.

    Article  CAS  Google Scholar 

  45. J. Sun, J. Xian, Z. Xia, H. Du, J. Lumin., 2010, 130, 1818; DOI: https://doi.org/10.1016/j.jlumin.2010.04.016.

    Article  CAS  Google Scholar 

  46. Adrie J. J. Bos, P. Dorenbos, A. Bessière, A. Lecointre, M. Bedu, M. Bettinelli, F. Piccinelli, Rad. Meas., 2011, 46, 1410; DOI: https://doi.org/10.1016/j.radmeas.2011.04.021.

    Article  CAS  Google Scholar 

  47. G. S. Ningombam, T. S. David, N. R. Singh, ACS Omega, 2019, 4, 13762; DOI: https://doi.org/10.1021/acsomega.9b01265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Z. Xia, D. Chen, M. Yang, T. Ying, J. Phys. Chem. Solids, 2010, 71, 175; DOI: https://doi.org/10.1016/j.jpcs.2009.10.016.

    Article  CAS  Google Scholar 

  49. J. D. Fidelus, S. Yatsunenko, M. Godlewski, W. Paszkowicz, E. Werner-Malento, W. Łojkowski, Scr. Mater., 2009, 61, 415; DOI: https://doi.org/10.1016/j.scriptamat.2009.04.034.

    Article  CAS  Google Scholar 

  50. Pat. RU 2548089 (in Russian).

  51. C. D. Trinh, P. T. P. Hau, T. M. D. Dang, C. M. Dang, J. Chem., 2019, 2019, 13; DOI: https://doi.org/10.1155/2019/5749702.

    Article  Google Scholar 

  52. A. A. Fotiev, B. V. Shulgin, A. S. Moskvin, F. F. Gavrilov, Vanadievye kristallofosfory. Sintez i svoystva [Vanadium Crystal Phosphors. Synthesis and Properties], Nauka, Moscow, 1976, 205 pp. (in Russian).

    Google Scholar 

  53. E. V. Tomina, B. V. Sladkopevtsev, M. V. Knurova, A. N. Latyshev, I. Y. Mittova, V. O. Mittova, Inorg. Mater., 2016, 5, 495; DOI: https://doi.org/10.1134/S0020168516050174.

    Article  Google Scholar 

  54. D. Brandon, U. Kaplan, Microstructure of Materials. Research and Control Methods, 2004, 384 pp.

  55. R. Liu, Y. Jin, L. Liu, Ya. Liu, D. Tu, J. Alloys Compd., 2020, 826, 154187; DOI: https://doi.org/10.1016/j.jallcom.2020.154187.

    Article  CAS  Google Scholar 

  56. E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, M. G. Brik, J. Phys. Condens. Matter., 2014, 26, 385503; DOI: https://doi.org/10.1088/0953-8984/26/38/385503.

    Article  PubMed  Google Scholar 

  57. Jihong Li, Jie Liu, Xibin Yu, J. Alloys Compd., 2011, 509, 9897; DOI: https://doi.org/10.1016/j.jallcom.2011.07.079.

    Article  CAS  Google Scholar 

  58. H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y. Yu, Y. Wang, ACS Appl. Mater. Interfaces, 2014, 6, 21264; DOI: https://doi.org/10.1021/am506251z.

    Article  CAS  PubMed  Google Scholar 

  59. Y. Li, G. Zang, J. Ma, Adv. Mat. Res., 2013, 634–638, 2268; DOI: https://doi.org/10.4028/www.scientific.net/AMR.634-638.2268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Tomina.

Additional information

The research results were partially obtained using the facilities of the Center for Collective Use of the Voronezh State University (https://ckp.vsu.ru).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 5, pp. 1113–1121, May, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomina, E.V., Sladkopevtsev, B.V., Novikova, L.A. et al. Microwave and ultrasonic radiation-activated synthesis and luminescent properties of nanopowder YVO4: Bi3+, Eu3+. Russ Chem Bull 72, 1113–1121 (2023). https://doi.org/10.1007/s11172-023-3879-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3879-x

Key words

Navigation