Skip to main content
Log in

TiIV complexes with an OSSO-type diol ligand in the catalysis of olefin polymerization

  • Brief Communications
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The OSSO-type diol ligand and the TiIV dichloride and bis-isopropoxide complexes with this ligand were synthesized. The structure of the latter complex was determined by single-crystal X-ray diffraction analysis. The catalytic activity of the systems based on the complexes (OSSO)TiCl2 and (OSSO)Ti(OPri)2, which were activated with mixtures of alkylaluminum chlorides (Et2AlCl, Et3Al2Cl3) and dibutylmagnesium, was studied in the polymerization of ethylene and its copolymerization with propylene. It was found that the homopolymerization affords ultra-high-molecular-weight polyethylene (UHMWPE) with a molecular weight up to 10.6·106, and the copolymerization gives copolymers containing up to 43 mol.% propylene units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. M. Kurtz, in The UHMWPE Handbook: Ultra-high Molecular Weight Polyethylene in Total Joint Replacement, Elsevier Academic Press, 2004.

  2. A. J. Peacock, Handbook of Polyethylene: Structures, Properties and Applications, Marcel Dekker, New York, NY, USA, 2000.

    Book  Google Scholar 

  3. A. N. Ozerin, S. S. Ivanchev, S. N. Chvalun, V. A. Aulov, N. I. Ivancheva, N. F. Bakeev, Catalyst. Polym. Sci., Ser. A, 2012, 54, 950; DOI: https://doi.org/10.1134/S0965545X12100033.

    Article  CAS  Google Scholar 

  4. B. P. Rotzinger, H. D. Chanzy, P. Smith, Polymer, 1989, 30, 1814–1819; DOI: https://doi.org/10.1016/0032-3861(89)90350-9.

    Article  CAS  Google Scholar 

  5. S. Ronca, G. Forte, H. Tjaden, S. Rastogi, Ind. Eng. Chem. Res., 2015, 54, 7373–7381; DOI: https://doi.org/10.1021/acs.iecr.5b01469.

    Article  CAS  Google Scholar 

  6. A. A. Antonov, K. P. Bryliakov, Eur. Polym. J., 2021, 142, 110162; DOI: https://doi.org/10.1016/j.eurpolymj.2020.110162.

    Article  CAS  Google Scholar 

  7. S. Ch. Gagieva, V. A. Tuskaev, I. V. Fedyanin, M. I. Buzin, V. G. Vasil’ev, G. G. Nikiforova, E. S. Afanas’ev, S. V. Zubkevich, D. A. Kurmaev, N. A. Kolosov, E. S. Mikhaylik, E. K. Golubev, A. I. Sizov, B. M. Bulychev, J. Organomet. Chem., 2017, 828, 89–95; DOI: https://doi.org/10.1016/j.jorganchem.2016.11.026.

    Article  CAS  Google Scholar 

  8. V. A. Tuskaev, S. Ch. Gagieva, D. A. Kurmaev, V. N. Khrustalev, P. V. Dorovatovskii, E. S. Mikhaylik, E. K. Golubev, M. I. Buzin, S. V. Zubkevich, G. G. Nikiforova, V. G. Vasil’ev, B. M. Bulychev, K. F. Magomedov, J. Organomet. Chem., 2018, 877, 85–91; DOI: https://doi.org/10.1016/j.jorganchem.2018.09.014.

    Article  CAS  Google Scholar 

  9. V. A. Tuskaev, S. Ch. Gagieva, D. A. Kurmaev, E. K. Melnikova, S. V. Zubkevich, M. I. Buzin, G. G. Nikiforova, V. G. Vasil’ev, D. Saracheno, V. S. Bogdanov, V. I. Privalov, B. M. Bulychev, Appl. Organomet. Chem., 2020, 34, e5933, DOI: https://doi.org/10.1002/aoc.5933.

    Article  CAS  Google Scholar 

  10. Z. Janas, Coord. Chem. Rev., 2010, 254, 2227–2233; DOI: https://doi.org/10.1016/j.ccr.2010.05.008.

    Article  CAS  Google Scholar 

  11. N. Nakata, T. Toda, A. Ishii, Polym. Chem., 2011, 2, 1597–1610; DOI: https://doi.org/10.1039/c1py00058f.

    Article  CAS  Google Scholar 

  12. V. Paradiso, V. Capaccio, D. H. Lamparelli, C. Capacchione, Coord. Chem. Rev., 2021, 429, 213644; DOI: https://doi.org/10.1016/j.ccr.2020.213644.

    Article  CAS  Google Scholar 

  13. R. D. J. Froese, D. G. Musaev, T. Matsubara, K. Morokuma, J. Am. Chem. Soc., 1997, 119, 7190–7196; DOI: https://doi.org/10.1021/ja970861g.

    Article  CAS  Google Scholar 

  14. R. D. J. Froese, D. G. Musaev, T. Matsubara, K. Morokuma, Organometallics, 1999, 18, 373–379; DOI: https://doi.org/10.1021/om9809466.

    Article  CAS  Google Scholar 

  15. L. Lavanant, A. Silvestru, A. Faucheux, L. Toupet, R. F. Jordan, J.-F. Carpentier, Organometallics, 2005, 24, 5604–5619; DOI: https://doi.org/10.1021/om050560c.

    Article  CAS  Google Scholar 

  16. V. A. Tuskaev, S. Ch. Gagieva, A. S. Lyadov, D. A. Kurmaev, S. V. Zubkevich, S. S. Shatokhin, V. E. Simikin, E. S. Mikhailik, E. K. Golubev, G. G. Nikiforova, M. I. Buzin, V. G. Vasil’ev, B. M. Bulychev, Petrol. Chem., 2020, 60, 329–333; DOI: https://doi.org/10.1134/S0965544120030226.

    Article  CAS  Google Scholar 

  17. V. A. Tuskaev, S. Ch. Gagieva, A. V. Churakov, D. A. Kurmaev, K. F. Magomedov, M. D. Evseeva, E. K. Golubev, M. I. Buzin, G. G. Nikiforova, D. Saracheno, S. S. Shatokhin, B. M. Bulychev, J. Organomet. Chem., 2022, 977, 122457; DOI: https://doi.org/10.1016/j.jorganchem.2022.122457.

    Article  CAS  Google Scholar 

  18. S. Alvarez, Chem. Rev., 2015, 115, 13447–13483; DOI: https://doi.org/10.1021/acs.chemrev.5b00537.

    Article  CAS  PubMed  Google Scholar 

  19. K. Mikami, M. Terada, T. Nakai, J. Am. Chem. Soc., 1990, 112, 3949–3954; DOI: https://doi.org/10.1021/ja00166a035.

    Article  CAS  Google Scholar 

  20. Sintezy organicheskikh preparatov [Synthesis of Organic Products], Ed. B A Kazanski, Izd-vo Inostran. Lit., Moscow, 1949, 2, 116–118 (in Russian).

  21. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339. DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Bulychev.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

The study was financially supported by the Russian Science Foundation (Project No. 23-23-00308). The NMR spectroscopic studies of copolymers were performed within the framework of the state assignment “Substances and materials for safety, reliability, and energy efficiency” (No. AAAA-A21-121011590086-0). The DSC and X-ray diffraction studies were carried out using the equipment of the Center for Molecular Structure Studies of the A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences with the financial support from the Ministry of Science and Higher Education of the Russian Federation (state assignment No. 075-00697-22-00). The investigation of the catalytic activity of titanium alkoxides using the model ethylene polymerization reaction and the studies of the properties of the synthesized polyethylene samples were performed within the framework of the Program of the Interdisciplinary Research and Educational School of the Lomonosov Moscow State University “The Future of the Planet and Global Environmental Changes”.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 4, pp. 1093–1098, April, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuskaev, V.A., Gagieva, S.C., Evseeva, M.D. et al. TiIV complexes with an OSSO-type diol ligand in the catalysis of olefin polymerization. Russ Chem Bull 72, 1093–1098 (2023). https://doi.org/10.1007/s11172-023-3876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3876-4

Key words

Navigation