Skip to main content
Log in

Effect of the dinitrosyl iron complex with N-ethylthiourea on ROS and NO intracellular levels and caspase activity in HeLa tumor cells

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The kinetics of intracellular accumulation of nitrogen monoxide and reactive oxygen species under the action of various concentrations of the dinitrosyl iron complex with N-ethylthiourea was described for the first time in in vitro experiments. Both a significant accumulation of NO by HeLa tumor cells and a substantial increase in the generation of intracellular reactive oxygen species under the action of the complex were shown. A decrease in the viability of tumor cells was revealed accompanied by an increase in the activity of proapoptotic enzymes of caspase 3 and caspase 8 after 6 h of the complex action. The data obtained suggest an important role of reactive oxygen species and reactive nitrogen species in the cytotoxic effect of the dinitrosyl iron complex with N-ethylthiourea on the tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Y. Hu, J. Xiang, L. Su, X. Tang, J. Int. Med. Res., 2020, 48, 0300060520905985; DOI: https://doi.org/10.1177/0300060520905985.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zh. Huang, J. Fu, Y. Zhang, Med. Chem., 2017, 7617; DOI: https://doi.org/10.1021/acs.jmedchem.6b01672.

  3. H. Alimoradi, K. Greish, A. B. Gamble, G. I. Giles, Pharm. Nanotechnol., 2019, 7, 279; DOI: https://doi.org/10.2174/2211738507666190429111306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D. B. Korman, L. A. Ostrovskaya, A. F. Vanin, Biophysics (IF), 2021, 66, 218; DOI: https://doi.org/10.1134/s000635092102010x.

    Article  CAS  Google Scholar 

  5. H. Sies, D. P. Jones, Nat. Rev. Mol. Cell. Biol., 2020, 21, 363; DOI: https://doi.org/10.1038/s41580-020-0230-3.

    Article  CAS  PubMed  Google Scholar 

  6. J. D. Hayes, A. T. Dinkova-Kostova, K. D. Tew, Cancer Cell, 2020, 38, 167; DOI: https://doi.org/10.1016/j.ccell.2020.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. R. Cyr, L. V. Huckaby, S. S. Shiva, B. S. Zuckerbraun, Crit. Care. Clin., 2020, 36, 307; DOI: https://doi.org/10.1016/j.ccc.2019.12.009.

    Article  PubMed  PubMed Central  Google Scholar 

  8. N. A. Sanina, G. I. Kozub, T. A. Kondrat’eva, D. V. Korchagin, G. V. Shilov, R. B. Morgunov, N. S. Ovanesyan, A. V. Kulikov, T. S. Stupina, A. A. Terent’ev, S. M. Aldoshin, J. Mol. Struct., 2022, 1266, 133506; DOI: https://doi.org/10.1016/j.molstruc.2022.133506.

    Article  CAS  Google Scholar 

  9. T. Liu, H. Schroeder, G. G. Power, A. B. Blood, Redox. Biol., 2022, 53, 102327; DOI: https://doi.org/10.1016/j.redox.2022.102327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. L. Kleschyov, S. Strand, S. Schmitt, D. Gottfried, M. Skatchkov, N. Sjakste, A. Daiber, V. Umansky, T. Munzel, Free Radic. Biol. Med., 2006, 40, 1340; DOI: https://doi.org/10.1016/j.freeradbiomed.2005.12.001.

    Article  CAS  PubMed  Google Scholar 

  11. T. M. Russell, M. G. Azad, D. R. Richardson, Molecules, 2021, 26, 5784; DOI: https://doi.org/10.3390/molecules26195784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. S. Stupina, I. I. Parkhomenko, I. V. Balalaeva, G. V. Kostyuk, N. A. Sanina, A. A. Terent’ev, Russ. Chem. Bull., 2011, 60, 1488; DOI: https://doi.org/10.1007/s11172-011-0221-9.

    Article  CAS  Google Scholar 

  13. T. Stupina, A. Balakina, T. Kondrat’eva, G. Kozub, N. Sanina, A. Terent’ev, Scientia Pharmaceutica, 2018, 86, 46; DOI: https://doi.org/10.3390/scipharm86040046.

    Article  Google Scholar 

  14. N. A. Sanina, G. I. Kozub, T. A. Kondrat’eva, T. S. Stupina, A. A. Balakina, A. A. Terent’ev, I. V. Sulimenkov, N. S. Ovanesyan, P. V. Dorovatovskii, V. N. Khrustalev, S. M. Aldoshin, J. Coord Chem., 2021, 74, 743; DOI: https://doi.org/10.1080/00958972.2020.1869222.

    Article  CAS  Google Scholar 

  15. N. A. Sanina, N. Y. Shmatko, D. V. Korchagin, G. V. Shilov, A. A. Terentev, T. S. Stupina, A. A. Balakina, N. V. Komleva, N. S. Ovanesyan, A. V. Kulikov, S. M. Aldoshin, J. Coord Chem., 2016, 69, 812; DOI: https://doi.org/10.1080/00958972.2016.1142536.

    Article  CAS  Google Scholar 

  16. N. Sanina, N. Shmatko, T. Stupina, A. Balakina, A. Terent’ev, Molecules, 2017, 22, 1426; DOI: https://doi.org/10.3390/molecules22091426.

    Article  PubMed  PubMed Central  Google Scholar 

  17. N. A. Sanina, I. V. Sulimenkov, N. S. Emel’yanova, A. S. Konyukhova, T. S. Stupina, A. A. Balakina, A. A. Terent’ev, S. M. Aldoshin, Dalton Trans., 2022, 51, 8893; DOI: https://doi.org/10.1039/d2dt01011arsc.li/dalton.

    Article  CAS  PubMed  Google Scholar 

  18. A. A. Balakina, V. A. Mumyatova, E. M. Pliss, A. A. Terent’ev, V. D. Sen’, Russ. Chem. Bull., 2018, 67, 2135; DOI: https://doi.org/10.1007/s11172-018-2341-y.

    Article  CAS  Google Scholar 

  19. A. Balakina, T. Prikhodchenko, V. Amozova, T. Stupina, V. Mumyatova, M. Neganova, I. Yakushev, A. Kornev, S. Gadomsky, B. Fedorov, D. Mishchenko, Antioxidants, 2021, 10, 1451; DOI: https://doi.org/10.3390/antiox10091451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K. S. Chun, D. H. Kim, Y. J. Surh, Cells, 2021, 30, 758; DOI: https://doi.org/10.3390/cells10040758.

    Article  Google Scholar 

  21. C. D. St. Laurent, T. C. Moon, A. D. Befus, Methods Mol. Biol., 2015, 1220, 339; DOI: https://doi.org/10.1007/978-1-4939-1568-2_21.

    Article  CAS  PubMed  Google Scholar 

  22. M. J. Reiniers, R. F. van Golen, S. Bonnet, M. Broekgaarden, T. M. van Gulik, M. R. Egmond, M. Heger, Anal. Chem., 2017, 89, 3853; DOI: https://doi.org/10.1021/acs.analchem.7b00043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. F. C. Damasceno, R. R. Facci, T. Marquesda, S. José, C. Toledo, Free Radic. Biol. Med., 2014, 77, 270; DOI: https://doi.org/10.1016/j.freeradbiomed.2014.09.012.

    Article  CAS  PubMed  Google Scholar 

  24. B. Kalyanaraman, V. Darley-Usmar, K. J. A. Davies, P. A. Dennery, H. J. Forman, M. B. Grisham, G. E. Mann, K. Moore, L. J. Roberts, H. Ischiropoulose, Free Radic. Biol. Med., 2012, 52, 1; DOI: https://doi.org/10.1016/j.freeradbiomed.2011.09.030.

    Article  CAS  PubMed  Google Scholar 

  25. T. Hirano, Int. Immunol., 2021, 33, 127; DOI: https://doi.org/10.1093/intimm/dxaa078.

    Article  CAS  PubMed  Google Scholar 

  26. L.-J. Su, J.-H. Zhang, H. Gomez, R. Murugan, X. Hong, D. Xu, F. Jiang, Z.-Y. Peng, Oxid. Med. Cell Longev, 2019, 9, 634; DOI: https://doi.org/10.1155/2019/5080843.

    Google Scholar 

  27. P. Orning, E. Lien, J. Leukoc. Biol., 2021, 109, 121; DOI: https://doi.org/10.1002/JLB.3MR0420-305R.

    Article  CAS  PubMed  Google Scholar 

  28. E. Eskandari, C. J. Eaves, J. Cell Biol., 2022, 221, e202201159; DOI: https://doi.org/10.1083/jcb.202201159.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Balakina.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Projects Nos AAAA-A19-119092390041-5 and AAAA-A19-119071890015-6) and the Russian Foundation for Basic Research (Project No. 20-03-00183A).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 4, pp. 1066–1074, April, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amozova, V.I., Balakina, A.A., Mishchenko, D.V. et al. Effect of the dinitrosyl iron complex with N-ethylthiourea on ROS and NO intracellular levels and caspase activity in HeLa tumor cells. Russ Chem Bull 72, 1066–1074 (2023). https://doi.org/10.1007/s11172-023-3872-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3872-9

Key words

Navigation