Skip to main content
Log in

Experimental and theoretical studies of hydrolytic stability of transparent polyimide films

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The hydrolytic stability of polyimide films (PI) in a 0.9% sodium chloride solution in the temperature range of existing biological objects was studied. The kinetic parameters of hydrolysis of PI films were calculated. It was established that the hydrolysis rate constant of an adamantane-containing film was significantly lower than that of an industrial Kapton film. The dielectric constant after hydrolysis was determined. It was shown that the dielectric properties of the adamantane-containing polymer remained unchanged under the hydrolysis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. Zuo, S. He, IEEE Trans. Ind. Electron., 2017, 64, 6319–6329; DOI: https://doi.org/10.1109/TIE.2017.2674594.

    Article  Google Scholar 

  2. E. Cunaj, P. S. Petrou, G. D. Kaprou, S. E. Kakabakos, E. Gogolides, A. Tserepi, Surf. Coatings Technol., 2018, 334, 292–299; DOI: https://doi.org/10.1016/J.SURFCOAT.2017.11.039.

    Article  CAS  Google Scholar 

  3. W. Wu, J.-W. Chen, J.-S. Wang, L. Zhou, H. Tao, J. Zou, M. Xu, L. Wang, J. Peng, M. Chan, IEEE Electron Device Lett., 2018, 39, 1660–1663; DOI: https://doi.org/10.1109/LED.2018.2871045.

    Article  CAS  Google Scholar 

  4. H. Oh, J.-H. Yang, G. H. Kim, H. Lee, B.-H. Kwon, C. Byun, C.-S. Hwang, K. I. Cho, J.-I. Lee, J. Inf. Disp., 2018, 165–170; DOI: https://doi.org/10.1080/15980316.2018.1524798.

  5. T. Kim, J. S. Price, A. Grede, S. Lee, G. Choi, W. Guan, T. N. Jackson, N. C. Giebink, Adv. Mater. Technol., 2018, 3, 1800067; DOI: 0.1002/ADMT.201800067.

    Article  Google Scholar 

  6. B. B. Q. Elias, P. J. Soh, A. Abdullah Al-Hadi, G. A. E. Vandenbosch, Int. J. Numer. Model. Electron. Networks, Devices Fields, 2021, 34, e2841; DOI: https://doi.org/10.1002/JNM.2841.

    Google Scholar 

  7. A. L. Didenko, A. M. Kamalov, V. E. Smirnova, G. V. Vaganov, E. N. Popova, D. A. Kuznetcov, V. M. Svetlichnyi, V. E. Yudin, V. V. Kudryavtsev, Russ. Chem. Bull., 2022, 71, 1320; DOI: https://doi.org/10.1007/s11172-022-3477-3.

    Article  Google Scholar 

  8. A. V. Ustimov, A. Yu. Tsegelskaya, G. K. Semenova, A. A. Kuznetsov, Russ. Chem. Bull., 2022, 71, 1320; DOI: https://doi.org/10.1007/s11172-022-3532-0.

    Article  Google Scholar 

  9. A. L. Didenko, D. A. Kuznetsov, A. G. Ivanov, V. E. Smirnova, G. V. Vaganov, A. M. Kamalov, V. M. Svetlichnyi, V. E. Yudin, V. V. Kudryavtsev, Russ. Chem. Bull., 2022, 71, 1309; DOI: https://doi.org/10.1007/s11172-022-3510-6.

    Article  Google Scholar 

  10. Yiheng Qina, Matiar M. R. Howlader, M. Jamal Deena, Yaser M. Haddaraa, P. Ravi Selvaganapathy, Sensors and Actuators B: Chemical, 2014, 202, 758–778; DOI: https://doi.org/10.1016/j.snb.2014.05.063.

    Article  Google Scholar 

  11. C. P. Constantin, M. Aflori, R. F. Damian, R. D. Rusu, Materials, 2019, 1–27; DOI: https://doi.org/10.3390/ma12193166.

  12. M. Xu, D. Obodo, V. K. Yadavalli, Biosensors and Bioelectronics, 2019, 96–114; DOI: https://doi.org/10.1016/j.bios.2018.10.019.

  13. R. R. Richardson, J. A. Miller, W. M. Reichert, Polyimides, Biomaterials, 1993, 14, 627–635; DOI: https://doi.org/10.1016/0142-9612(93)90183-3.

    Article  CAS  PubMed  Google Scholar 

  14. C. Hassler, T. Boretius, T. Stieglitz, J. Polym. Sci. Part B. Polym. Physics, 2011, 49, 18–33; DOI: https://doi.org/10.1002/polb.22169.

    Article  CAS  Google Scholar 

  15. N. Barie, H. Sigrist, M. Rapp, Analusis, 1999, 27, 622–629; DOI: https://doi.org/10.1051/analusis:1999270622.

    Article  CAS  Google Scholar 

  16. I. A. Novakov, B. S. Orlinson, Polym. Sci., Ser. A, 1995, 1209–1211.

  17. I. A. Novakov, B. S. Orlinson, D. V. Zav’yalov, S. V. Mednikov, E. N. Savel’ev, E. A. Potaenkova, M. A. Nakhod, A. M. Pichugin, A. V. Kireeva, M. N. Kovaleva, Russ. Chem. Bull., 2021, 70, 2457; DOI: https://doi.org/10.1007/s11172-021-3196-1.

    Article  Google Scholar 

  18. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, L. A. Laius, Polyimides — Thermally Stable Polymers, Plenum Publishing, New York, 1987, 374 pp.; DOI: https://doi.org/10.1002/pol.1988.140260307.

    Google Scholar 

  19. L. Bellamy, Novye dannye po IK-spektram slozhnykh molekul [New Data on IR Spectra of Complex Molecules], Ed. by Yu. A. Pentin, Mir, Moscow, 1971, 318 pp. (in Russian).

  20. M. Abadie, High Performance Polymers — Polyimides Based — From Chemistry to Applications, Eds Marc Jean Médard Abadie, InTech Rijeka, Croatia, 2012, p. 37; DOI: https://doi.org/10.5772/2834.

    Book  Google Scholar 

  21. S. Chen, X. Guo, J. Fang, K. Tanaka, H. Kita, K. Okamoto, High Performance Polymers, 2006, 617–635; DOI: https://doi.org/10.1177/0954008306068224.

  22. X. Chen, K. Chen, P. Chen, M. Higa, K. Okamoto, T. Hirano, J. Polymer Science, Part A: Polymer Chemistry, 2010, 905–915; DOI: https://doi.org/10.1002/pola.23844.

  23. X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Macromolecules, 2002, 6707–6713; DOI: https://doi.org/10.1021/ma020260w.

  24. S. Araujo, D. Yu. Likhachev, A. L. Rusanov, N. M. Belomoina, P. V. Kostoglodov, E. A. Fomin, Polym. Sci., Ser. A, 2008, 1493–1505; DOI: https://doi.org/10.1134/S0965545X08080075.

  25. I. A. Novakov, B. S. Orlinson, O. A. Kuznechikov, R. V. Brunilin, I. O. Culago, A. I. Pavlyuchko, Z. M. Sabirov, V. N. Urazbaev, Yu. B. Monacov, Polym. Sci., Ser. A, 1999, 79–82.

  26. M. M. Koton, V. V. Kudryavtsev, N. A. Adrova, Polym. Sci., Ser. A, 1974, 2081–2085.

  27. V. A. Svetlichny, V. V. Kudryavtsev, N. A. Adrova, M. M. Koton, J. Org. Chem., 1974, 1896–1900.

  28. M. J. S. Dewar, W. Thiel, J. Am. Chem. Soc., 1977, 4899–4907.

  29. Shinji Ando, Tohru Matsuura, Sh. Sasaki, Polymer J., 1997, 69–76; DOI: https://doi.org/10.1295/polymj.29.69.

  30. R. S. Mulliken, J. Chem. Phys., 1955, 1833–1840.

  31. T. Lu, F. Chen, J. Comput. Chem., 2012, 580–592; DOI: https://doi.org/10.1002/jcc.22885.

  32. J.-H. Jou, P.-T. Huang, Polym. J., 1990, 909–918; DOI: https://doi.org/10.1295/polymj.22.909.16.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Alykova.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was financially supported by the Volgograd State Technical University (Project No. 17/474-22).

The studies were carried out using equipment of the Center for Collective Use “Physicochemical Methods of Investigation” at the Volgograd State Technical University.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 4, pp. 1036–1045, April, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novakov, I.A., Orlinson, B.S., Zav’yalov, D.V. et al. Experimental and theoretical studies of hydrolytic stability of transparent polyimide films. Russ Chem Bull 72, 1036–1045 (2023). https://doi.org/10.1007/s11172-023-3869-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3869-6

Key words

Navigation