Skip to main content
Log in

The Richter reaction in the synthesis of combretastatin analogs

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The regioselectivity of the Richter cyclization for a series of 4-halo-2-[(3,4,5 trimethoxyphenyl)ethynyl]anilines has been studied to obtain trimethoxybenzoyl-1H-indazoles, heteroanalogs of combretastatin. In aqueous acetonitrile, cinnolin-4(1H)-ones, which are products of 6-endo-dig cyclization, are formed along with 1H-indazoles, products of 5-exo-dig cyclization. In a DMSO:H2O mixture, 3-aroyl-1H-indazoles are formed exclusively. In the case of 2-[(4-methoxyphenyl)ethynyl]-4-haloanilines, the 5-exo-dig cyclization proceeds independently on the used solvent. Among the prepared trimethoxy-benzoyl-1H-indazoles, the 5-chloro-substituted indazole showed the highest cytotoxicity, while the fluoro-substituted indazole exhibited no severe cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Jordan, J. A. Hadfield, N. J. Lawrence, A. T. Mcgown, Med. Res. Rev., 1998, 18, 259–296; DOI: https://doi.org/10.1002/(SICI)1098-1128(199807)18:4<259::AID-MED3>3.0.CO;2-U.

    Article  CAS  PubMed  Google Scholar 

  2. N. A. Zefirov, A. V. Mamaeva, A. I. Krasnoperova, Yu. A. Evteeva, E. R. Milaeva, S. A. Kuznetsov, O. N. Zefirova, Russ. Chem. Bull, 2021, 70, 549–554; DOI: https://doi.org/10.1007/s11172-021-3123-5.

    Article  CAS  Google Scholar 

  3. E. Hamel, Med. Res. Rev., 1996, 16, 207–231; DOI: https://doi.org/10.1002/(SICI)1098-1128(199603)16:2<207::AID-MED4>3.0.CO;2-4.

    Article  CAS  PubMed  Google Scholar 

  4. L. Vincent, P. Kermani, L. M. Young, J. Cheng, F. Zhang, K. Shido, G. Lam, H. Bompais-Vincent, Z. Zhu, D. J. Hicklin, P. Bohlen, D. J. Chaplin, C. May, S. Rafii, J. Clin. Investig., 2005, 115, 2992–3006; DOI: https://doi.org/10.1172/JCI24586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G. R. Pettit, M. R. Rhodes, D. L. Herald, E. Hamel, J. M. Schmidt, R. K. Pettit, J. Med. Chem., 2005, 48, 4087–4099; DOI: https://doi.org/10.1021/jm0205797.

    Article  CAS  PubMed  Google Scholar 

  6. A. Dowlati, K. Robertson, M. Cooney, W. P. Petros, M. Stratford, J. Jesberger, N. Rafie, B. Overmoyer, V. Makkar, B. Stambler, A. Taylor, J. Waas, J. S. Lewin, K. R. McCrae, S. C. Remick, Cancer Res., 2002, 62, 3408–3416; PMID: 12067983.

    CAS  PubMed  Google Scholar 

  7. K. Hori, S. Saito, Y. Nihei, M. Suzuki, Y. Sato, Japan. J. Cancer Res., 1999, 90, 1026–1038; DOI: https://doi.org/10.1111/j.1349-7006.1999.tb00851.x.

    Article  CAS  Google Scholar 

  8. Y. Kong, J. Grembecka, M. C. Edler, E. Hamel, S. L. Mooberry, M. Sabat, J. Rieger, M. L. Brown, Chem. Biol., 2005, 12, 1007–1014; DOI: https://doi.org/10.1016/j.chembiol.2005.06.016.

    Article  CAS  PubMed  Google Scholar 

  9. L. Wang, K. W. Woods, Q. Li, K. J. Barr, R. W. McCroskey, S. M. Hannick, L. Gherke, R. B. Credo, Y.-H. Hui, K. Marsh, R. Warner, J. Y. Lee, N. Zielinski-Mozng, D. Frost, S. H. Rosenberg, H. L. Sham, J. Med. Chem., 2002, 45, 1697–1711; DOI: https://doi.org/10.1021/jm010523x.

    Article  CAS  PubMed  Google Scholar 

  10. E. A. Silyanova, A. V. Samet, M. N. Semenova, V. V. Semenov, Russ. Chem. Bull., 2021, 70, 498–509; DOI: https://doi.org/10.1007/s11172-021-3115-5.

    Article  CAS  Google Scholar 

  11. S. L. Gwaltney, H. M. Imade, K. J. Barr, Q. Li, L. Gehrke, R. B. Credo, R. B. Warner, J. Y. Lee, P. Kovar, J. Wang, M. A. Nukkala, N. A. Zielinski, D. Frost, S.-C. Ng, H. L. Sham, Bioorg. Med. Chem. Lett., 2001, 11, 871–874; DOI: https://doi.org/10.1016/S0960-894X(01)00098-1.

    Article  CAS  PubMed  Google Scholar 

  12. D. Alloatti, G. Giannini, W. Cabri, I. Lustrati, M. Marzi, A. Ciacci, G. Gallo, M. Ornella Tinti, M. Marcellini, T. Riccioni, M. B. Guglielmi, P. Carminati, C. Pisano, J. Med. Chem., 2008, 51, 2708–2721; DOI: https://doi.org/10.1021/jm701362m.

    Article  CAS  PubMed  Google Scholar 

  13. Pat. US20030195244 Al; Chem. Abstrs., 2003, 139, 323432.

  14. C. C. Kuo, H.-P. Hsieh, W.-Y. Pan, C.-P. Chen, J.-P. Liou, S.-J. Lee, Y.-L. Chang, L.-T. Chen, C.-T. Chen, Cancer Res., 2004, 64, 4621–4628; DOI: https://doi.org/10.1158/0008-5472.CAN-03-3474.

    Article  CAS  PubMed  Google Scholar 

  15. J.-X. Duan, X. Cai, F. Meng, L. Lan, C. Hart, M. Matteucci, J. Med. Chem., 2007, 50, 1001–1006; DOI: https://doi.org/10.1021/jm061348t.

    Article  CAS  PubMed  Google Scholar 

  16. Pat. WO2006057946 A2; Chem. Abstrs., 2006, 145, 27984.

  17. G. S. Rai, J. J. Maru, Chem. Heterocycl. Compd., 2020, 56, 973–975; DOI: https://doi.org/10.1007/s10593-020-02761-x.

    Article  CAS  Google Scholar 

  18. K. Lukin, M. C. Hsu, D. Fernando, M. R. Leanna, J. Org. Chem., 2006, 71, 8166; DOI: https://doi.org/10.1021/jo0613784.

    Article  CAS  PubMed  Google Scholar 

  19. C. M. Counceller, C. C. Eichman, B. C. Wray, J. P. Stambuli, Org. Lett., 2008, 10, 1021; DOI: https://doi.org/10.1021/ol800053f.

    Article  CAS  PubMed  Google Scholar 

  20. C. M. Counceller, C. C. Eichman, B. C. Wray, E. R. Welin, J. P. Stambuli, Org. Synth., 2011, 88, 33; DOI: https://doi.org/10.1002/0471264229.os088.04.

    Article  CAS  Google Scholar 

  21. S. Bräse, S. Dahmen, J. Heuts, Terahedron Lett., 1999, 40, 6201; DOI: https://doi.org/10.1016/S0040-4039(99)01166-1.

    Article  Google Scholar 

  22. N. G. Khaligh, T. Mihankhah, M. R. Johan, J. J. Ching, Monatshefte für Chemie — Chemical Monthly, 2018, 149, 1083–1087; DOI: https://doi.org/10.1007/s00706-018-2174-2.

    Article  CAS  Google Scholar 

  23. N. A. Danilkina, E. V. Andrievskaya, A. V. Vasileva, A. G. Lyapunova, A. M. Rumyantsev, A. A. Kuzmin, E. A. Bessonova, I. A. Balova, Molecules, 2021, 26, No. 24, 1–15; DOI: https://doi.org/10.3390/molecules26247460.

    Article  Google Scholar 

  24. S. F. Vasilevsky, E. V. Tretyakov, H. D. Verkruijsse, Synthetic commun., 1994, 24, 1733–1736; DOI: https://doi.org/10.1080/00397919408010177.

    Article  CAS  Google Scholar 

  25. A. Goeminne, P. J. Scammells, S. M. Devine, B. L. Flynn, Terahedron Lett., 2010, 51, 6882; DOI: https://doi.org/10.1016/j.tetlet.2010.10.122.

    Article  CAS  Google Scholar 

  26. N. A. Zol’nikova, L. G. Fedenok, E. V. Peresypkina, A. V. Virovets, Russ. J. Org. Chem., 2007, 43, 790; DOI: https://doi.org/10.1134/S1070428007050302.

    Article  Google Scholar 

  27. A. Goeminne, P. J. Scammells, S. M. Devine, B. L. Flynn, Terahedron Lett., 2010, 51, 6882; DOI: https://doi.org/10.1016/j.tetlet.2010.10.122.

    Article  CAS  Google Scholar 

  28. I. D. Ivanchikova, L. G. Fedenok, M. S. Shvartsberg, Bull. Russ. Acad. Sci., Div. Chem. Sci., 1997, 46, 105–109; DOI: https://doi.org/10.1007/BF02495357.

    CAS  Google Scholar 

  29. L. G. Fedenok, M. S. Shvartsberg, V. S. Bashurova, G. A. Bogdanchikov, Tetrahedron Lett., 2010, 51, 67–69; DOI: https://doi.org/10.1016/j.tetlet.2009.10.078.

    Article  CAS  Google Scholar 

  30. G. C. Senadi, B. S. Gore, W-P. Hu, J.-J. Wang, Org. Lett., 2016, 18, 2890–2893; DOI: https://doi.org/10.1021/acs.orglett.6b01207?ysclid=ld6h7ufx1c888852867.

    Article  CAS  PubMed  Google Scholar 

  31. N. A. Danilkina, E. G. Gorbunova, V. N. Sorokoumov, I. A. Balova, Russ. J. Org. Chem., 2012, 48, 1424–1434; DOI: https://doi.org/10.1134/S1070428012110048.

    Article  CAS  Google Scholar 

  32. V. N. Mikhaylov, A. O. Pavlov, Y. V. Ogorodnov, D. V. Spiridonova, V. N. Sorokoumov, I. A. Balova, Chem. Heterocycl. Compd., 2020, 56, 915–922; DOI: https://doi.org/10.1007/s10593-020-02750-0.

    Article  CAS  Google Scholar 

  33. A. A. Babushkina, V. N. Mikhaylov, A. S. Novikov, V. N. Sorokoumov, M. A. Gureev, M. A. Kryukova, A. O. Shpakov, I. A. Balova, Chem. Heterocycl. Compd., 2022, 58, 432–437; DOI: https://doi.org/10.1007/s10593-022-03109-3.

    Article  CAS  Google Scholar 

  34. S. Z. Vatsadze, Yu. D. Loginova, G. dos Passos Gomes, I. V. Alabugin, Chem.-Eur. J., 2017, 23, 3225–3245; DOI: https://doi.org/10.1002/chem.201603491.

    Article  CAS  PubMed  Google Scholar 

  35. Preparativnaya organicheskaya khimiya [Preparative Organic Chemistry], Ed. N. S. Vulfson, Izd-vo Khimiya, Moscow, 1959, 908 pp. (in Russian).

    Google Scholar 

  36. A. Weissberger, E. S. Proskauer, J. A. Riddik. E. E. Toops, Jr., Organicheskie rastvoritely: Fizicheskie svoistva i metody ochistky [Organic Solvents: Physical Properties and Methods of Purification], Ed. A. Weissberger, Izd-vo Inostrannoy Literatury, 1958, 520 pp. (in Russian).

  37. R. Adepu, A. Rajitha, D. Ahuja, A. K. Sharma, B. Ramudu, R. Kapavarapu, K. V. L. Parsa, M. Pal, Org. Biomol. Chem., 2014, 12, 2514–2518; DOI: https://doi.org/10.1039/C3OB42535E.

    Article  CAS  PubMed  Google Scholar 

  38. L. Han, Y. Zhang, W. Chen, X. Cheng, K. Ye, J. Zhang, Y. Wang, Chem. Commun., 2015, 51, 214477–4480; DOI: https://doi.org/10.1039/C5CC00476D.

    Google Scholar 

  39. C. Ma, X. Liu, X. Li, J. Flippen-Anderson, S. Yu, J. M. Cook, J. Org. Chem., 2001, 66, 4525–4542; DOI: https://doi.org/10.1021/jo001679s.

    Article  CAS  PubMed  Google Scholar 

  40. N. Zhou, L. Wang, D. W. Thompson, Y. Zhao, Tetrahedron, 2011, 67, 125–143; DOI: https://doi.org/10.1016/j.tet.2010.11.012.

    Article  Google Scholar 

  41. Q. Ding, X. Liu, J. Yu, Q. Zhang, D. Wang, B. Cao, Y. Peng, Tetrahedron, 2012, 68, 3937–3941; DOI: https://doi.org/10.1016/j.tet.2012.03.098.

    Article  CAS  Google Scholar 

  42. K. Hiroya, S. Itoh, T. Sakamoto, J. Org. Chem., 2004, 69, 1126–1136; DOI: https://doi.org/10.1021/jo035528b.

    Article  CAS  PubMed  Google Scholar 

  43. Pat. CN115304545 A; Chem. Abstrs., 2022, 181, 29924.

  44. A. Carpita, A. Ribecai, P. Stabile, Tetrahedron, 2010, 66, 7169–7178; DOI: https://doi.org/10.1016/j.tet.2010.06.083.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Balova.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was performed under financial support of the Russian Science Foundation (Project No. 21-73-00170).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 4, pp. 1012–1022, April, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babushkina, A.A., Mikhailov, V.N., Ogurtsova, A.D. et al. The Richter reaction in the synthesis of combretastatin analogs. Russ Chem Bull 72, 1012–1022 (2023). https://doi.org/10.1007/s11172-023-3866-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3866-3

Key words

Navigation