Skip to main content
Log in

Reaction of 2-R-naphtho[2,3-d][1,3,2]dioxaphosphinin-4-ones with arylidene derivatives of malonic acid esters: synthesis, molecular and crystal structures of 5-oxo-2-R-naphtho[2,3-f][1,2]oxaphosphepine 2-oxides

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of 2-R-naphtho[2,3-d][1,3,2]dioxaphosphinin-4-ones with derivatives of β-dicarbonyl compounds, such as bis(2,2,3,3-tetrafluoropropyl) benzylidene- and 4-bromobenzylidenemalonates, afforded seven-membered heterocycles, 5-oxo-2-R-naphtho[2,3-f][1,2]oxaphosphepine 2-oxides, with high regioselectivity and stereoselectivity. In all cases, the major diastereomers were isolated and their structures were established by quantum chemical calculations, NMR spectroscopy, and X-ray diffraction analysis. In the crystal structures, the seven-membered heterocycle of the molecules adopts a distorted boat conformation. In solution, the molecules can adopt both a distorted boat conformation and a chair conformation with a similar energy. The process also involves the reversible kinetically controlled formation of spiro phosphoranes, which are gradually transformed into thermodynamically more stable 1,2-oxaphosphepines. The reaction proceeds under mild conditions and leads to the formation of P—C and C—C bonds and the phosphoryl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. Rupainwar, J. Pandey, S. Smrirti, R. Ruchi, Orient. J. Chem., 2019, 35, 423; DOI: https://doi.org/10.13005/ojc/350154.

    Article  CAS  Google Scholar 

  2. J. van Schijndel, D. Molendijk, H. Spakman, E. Knaven, L. A. Canalle, J. Meuldijk, Green Chem. Lett. Rev., 2019, 12, 323; DOI: https://doi.org/10.1080/17518253.2019.1643931.

    Article  CAS  Google Scholar 

  3. N. Oguchi, H. Kanokogi, Jpn. Kokai Tokkyo Koho, JP 2007261978 A 20071011, 2007.

  4. M. Hansch, T. Ehlis, B. Wagner, PCT Int. Appl., WO 2009112403 A2 20090917, 2009.

  5. H. Y. Jung, H. R. Moon, J. N. Park, C. H. Park, J. H. Park, H. J. Lee, Y. M. Song, Pat. KR 2014100664 A 20140818, 2014.

  6. T. Monhaphol, B. Albinsson, P. S. Wanichwecharungruang. J. Pharm. Pharmacol., 2007, 59, 279; DOI: https://doi.org/10.1211/jpp.59.2.0014.

    Article  CAS  PubMed  Google Scholar 

  7. G. Sbardella, S. Castellano, C. Vicidomini, D. Rotili, A. Nebbioso, M. Miceli, L. Altucci, A. Mai, Bioorg. Med. Chem. Lett., 2008, 18, 2788; DOI: https://doi.org/10.1016/j.bmcl.2008.04.017.

    Article  CAS  PubMed  Google Scholar 

  8. S. Zhang, K. Cheng, X. Wang, H. Yin, Bioorg. Med. Chem., 2012, 20, 6073; DOI: https://doi.org/10.1016/j.bmc.2012.08.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O. Kaumanns, R. Lucius, H. Mayr, Chem. Europ. J., 2008, 14, 9675; DOI: https://doi.org/10.1002/chem.200801277.

    Article  CAS  Google Scholar 

  10. A. C. Knipe, in Organic Reaction Mechanisms. 2015, Ed. A. C. Knipe, John Wiley & Sons Ltd, 2019, Ch. 10, pp. 429–515; DOI: https://doi.org/10.1002/9781119125082.ch10.

  11. L. Horner, K. Klüpfel, Liebigs Ann. Chem., 1955, 591, 69; DOI: https://doi.org/10.1002/jlac.19555910105.

    Article  CAS  Google Scholar 

  12. D. Bernard, R. Burgada, Tetrahedron, 1975, 31, 797; DOI: https://doi.org/10.1016/0040-4020(75)80084-6.

    Article  CAS  Google Scholar 

  13. F. Ramirez, A. V. Patwardhan, S. R. Heller, J. Am. Chem. Soc., 1964, 86, 514; DOI: https://doi.org/10.1021/ja01057a047.

    Article  CAS  Google Scholar 

  14. F. Ramirez, O. P. Madan, S. R. Heller, J. Am. Chem. Soc, 965, 87, 731; DOI: https://doi.org/10.1021/ja01082a009.

  15. F. Ramirez, J. F. Pilot, O. P Madan, C. P. Smith, J. Am. Chem. Soc., 1968, 90, 1275; DOI: https://doi.org/10.1021/ja01007a030.

    Article  CAS  Google Scholar 

  16. B. A. Arbuzov, E. N. Dianova, V. S. Vinogradova, Russ. Chem. Bull., 1970, 19, 2388; DOI: https://doi.org/10.1007/BF00859081.

    Article  Google Scholar 

  17. B. A. Arbuzov, E. N. Dianova, V. S. Vinogradova, Russ. Chem. Bull., 1969, 18, 1012; DOI: https://doi.org/10.1007/BF00922860.

    Article  Google Scholar 

  18. B. A. Arbuzov, in Khimiya i primeneniye fosfororganicheskikh soyedineniy. Trudy IV konf. [Chemistry and Application of Organophosphorus Compounds. Proceedings of IV Conf.], Ed. N. P. Grechkin, Moscow, Nauka, 1972, pp. 43–52 (in Russian).

  19. D. Dvořák, Z. Arnold, Coll. Czech. Chem. Commun., 1987, 52, 2699; DOI: https://doi.org/10.1135/cccc19872699.

    Article  Google Scholar 

  20. A. A. Petrov, V. V. Ragulin, V. I. Zakharov, S. M. Esakiov, N. A. Razumova, Dokl. Chem., 1981, 259, 322.

    Google Scholar 

  21. S. Sobhani, S. Rezazadeh, Synlett., 2010, 1485; DOI: https://doi.org/10.1055/s-0029-1220069.

  22. L. M. Burnaeva, V. F. Mironov, S. V. Romanov, G. A. Ivkova, I. L. Shulaeva, I. V. Konovalova, Russ. J. Gen. Chem., 2001, 71, 488; DOI: https://doi.org/10.1023/A:1012302311657.

    Article  CAS  Google Scholar 

  23. V. F. Mironov, E. R. Zagidullina, G. A. Ivkova, A. B. Dobrynin, A. T. Gubaidullin, S. K. Latypov, R. Z. Musin, I. A. Litvinov, A. A. Balandina, I. V. Konovalova, Arkivoc, 2004, Part xii, 95; DOI: https://doi.org/10.3998/ark.5550190.0005.c09.

  24. L. M. Burnaeva, V. F. Mironov, Yu. Yu. Borisova, I. V. Konovalova, Russ. J. Org. Chem., 2009, 45, 1868; DOI: https://doi.org/10.1134/S1070428009120239.

    Article  CAS  Google Scholar 

  25. APEX2, Version 2.1, SAINTPlus. Data Reduction and Correction Program., Version 7.31A, Bruker Advansed X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin, USA, 2006.

  26. L. H. Straver, A. J. Schierbeek, MOLEN. Structure Determination System. Program. Description., Nonius B. V., 1994, Vol. 1, 180 p.

  27. G. M. Sheldrik, SADABS, Program for Empirical X-ray Absorption Correction, Bruker-Nonis, 1990–2004.

  28. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  Google Scholar 

  29. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

  30. L. J. Farrugia, Appl. Crystallogr., 2012, 45, 849; DOI: https://doi.org/10.1107/S0021889812029111.

    Article  CAS  Google Scholar 

  31. A. L. Spek, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 9; DOI: https://doi.org/10.1107/S2053229614024929.

    Article  CAS  Google Scholar 

  32. A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65, 148; DOI: https://doi.org/10.1107/S090744490804362X.

    Article  CAS  Google Scholar 

  33. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shield, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Crystallogr., 2020, 53, 226; DOI: https://doi.org/10.1107/S1600576719014092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Rev. A.03 Gaussian, Inc., 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Mironov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

The work was performed within the framework of the state assignments of the Kazan Scientific Center of the Russian Academy of Sciences. The synthesis of the starting compounds was performed within the framework of the Program of the Development of the Kazan (Volga Region) Federal University under the Federal Academic Leadership Programme “Priority 2030”.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 4, pp. 997–1011, April, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, V.F., Ivkova, G.A., Dimukhametov, M.N. et al. Reaction of 2-R-naphtho[2,3-d][1,3,2]dioxaphosphinin-4-ones with arylidene derivatives of malonic acid esters: synthesis, molecular and crystal structures of 5-oxo-2-R-naphtho[2,3-f][1,2]oxaphosphepine 2-oxides. Russ Chem Bull 72, 997–1011 (2023). https://doi.org/10.1007/s11172-023-3865-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3865-2

Key words

Navigation