Skip to main content
Log in

Condensation of formyl-substituted indoline spiropyrans with 3H-indolium salts: specific features

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A condensation reaction between formyl-containing spiropyrans and iodides of 1,2,3,3-tetramethyl-3H-indolium derivatives was studied. The reaction results in a mixture of products with a strong predominance of one of them irrespective of the structure of the starting compounds. The structures of the compounds formed during the reaction were determined based on the NMR, IR, and mass spectroscopy data. The dependence of the yield of the major reaction product on the structure of the starting compounds was studied. The prerequisites for the observed reaction pathway were established and the reaction mechanism was proposed using the results of quantum-chemical calculations based on analysis of the molecular electrostatic potential and the dual descriptor of reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. Klajn, Chem. Soc. Rev., 2014, 43, 148; DOI: https://doi.org/10.1039/C3CS60181A.

    Article  CAS  PubMed  Google Scholar 

  2. J. K. Rad, Z. Balzade, A. R. Mahdavian, J. Photochem. Photobiol. C, 2022, 51, 100487; DOI: https://doi.org/10.1016/j.jphotochemrev.2022.100487.

    Article  Google Scholar 

  3. P. R. Sahoo, K. Prakash, S. Kumar, Coord. Chem. Rev., 2018, 357, 18; DOI: https://doi.org/10.1016/j.ccr.2017.11.010.

    Article  CAS  Google Scholar 

  4. S. Wan, Y. Zheng, J. Shen, W. Yang, M. Yin, ACS Appl. Mater. Interfaces, 2014, 6, 19515; DOI: https://doi.org/10.1021/am506641t.

    Article  CAS  PubMed  Google Scholar 

  5. M. H. Barbee, K. Mondal, J. Z. Deng, V. Bharambe, T. V. Neumann, J. J. Adams, N. Boechler, M. D. Dickey, S. L. Craig, ACS Appl. Mater. Interfaces, 2018, 10, 29918; DOI: https://doi.org/10.1021/acsami.8b09130.

    Article  CAS  PubMed  Google Scholar 

  6. M.-Q. Zhu, T. Chen, G.-F. Zhang, C. Li, W.-L. Gong, Z.-Q. Chen, M. P. Aldred, Chem. Commun., 2014, 50, 2664; DOI: https://doi.org/10.1039/C3CC49016E.

    Article  CAS  Google Scholar 

  7. J. Andrés Castán, V. M. Mwalukuku, A. J. Riquelme, J. Liotier, Q. Huaulmé, J. A. Anta, P. Maldivi, R. Demadrille, Mater. Chem. Front., 2022, 6, 2994; DOI: https://doi.org/10.1039/D2QM00375A.

    Article  PubMed  PubMed Central  Google Scholar 

  8. T. Takeshita, T. Umeda, M. Hara, J. Photochem. Photobiol. A, 2017, 333, 87; DOI: https://doi.org/10.1016/j.jphotochem.2016.10.017.

    Article  CAS  Google Scholar 

  9. S. Ma, H. Ting, Y. Ma, L. Zheng, M. Zhang, L. Xiao, Z. Chen, AIP Advances, 2015, 5, 057154; DOI: https://doi.org/10.1063/1.4921880.

    Article  Google Scholar 

  10. E. I. Balmond, B. K. Tautges, A. L. Faulkner, V. W. Or, B. M. Hodur, J. T. Shaw, A. Y. Louie, J. Org. Chem., 2016, 81, 8744; DOI: https://doi.org/10.1021/acs.joc.6b01193.

    Article  CAS  PubMed  Google Scholar 

  11. N. A. Voloshin, A. V. Chernyshev, E. V. Solov’eva, I. A. Rostovtseva, A. V. Metelitsa, G. S. Borodkin, V. A. Kogan, V. I. Minkin, Russ. Chem. Bull., 2014, 63, 1373; DOI: https://doi.org/10.1007/s11172-014-0605-8.

    Article  CAS  Google Scholar 

  12. C. J. Roxburgh, P. G. Sammes, A. Abdullah, Dyes Pigm., 2009, 83, 31; DOI: https://doi.org/10.1016/j.dyepig.2009.03.017.

    Article  CAS  Google Scholar 

  13. M. Schulz-Senft, P. J. Gates, F. D. Sönnichsen, A. Staubitz, Dyes Pigm., 2017, 136, 292; DOI: https://doi.org/10.1016/j.dyepig.2016.08.039.

    Article  CAS  Google Scholar 

  14. A. Metelitsa, A. Chernyshev, N. Voloshin, O. Demidov, E. Solov’eva, I. Rostovtseva, E. Gaeva, New J. Chem., 2021, 45, 13529; DOI: https://doi.org/10.1039/D1NJ02371C.

    Article  CAS  Google Scholar 

  15. I. V. Ozhogin, A. D. Pugachev, V. V. Tkachev, A. S. Kozlenko, P. B. Chepurnoi, V. S. Dmitriev, G. V. Shilov, S. M. Aldoshin, V. I. Minkin, B. S. Lukyanov, Russ. Chem. Bull., 2022, 71, 1710; DOI: https://doi.org/10.1007/s11172-022-3581-4.

    Article  CAS  Google Scholar 

  16. I. V. Ozhogin, P. V. Zolotukhin, V. V. Tkachev, A. D. Pugachev, A. S. Kozlenko, A. A. Belanova, S. M. Aldoshin, B. S. Lukyanov, Russ. Chem. Bull., 2021, 70, 1388; DOI: https://doi.org/10.1007/s11172-021-3228-x.

    Article  CAS  Google Scholar 

  17. N. Kida, M. Hikita, I. Kashima, M. Okubo, M. Itoi, M. Enomoto, K. Kato, M. Takata, N. Kojima, J. Am. Chem. Soc., 2009, 131, 212; DOI: https://doi.org/10.1021/ja806879a.

    Article  CAS  PubMed  Google Scholar 

  18. S. M. Aldoshin, N. A. Sanina, Russ. Chem. Rev., 2016, 85, 1185; DOI: https://doi.org/10.1070/RCR4652.

    Article  CAS  Google Scholar 

  19. Y. Funasako, M. Ason, J.-I. Takebayashi, M. Inokuchi, Cryst. Growth Des., 2019, 19, 7308; DOI: https://doi.org/10.1021/acs.cgd.9b01185.

    Article  CAS  Google Scholar 

  20. Y. Funasako, H. Okada, M. Inokuchi, ChemPhotoChem, 2019, 3, 28; DOI: https://doi.org/10.1002/cptc.201800197.

    Article  CAS  Google Scholar 

  21. V. V. Tkachev, M. B. Lukyanova, B. S. Lukyanov, A. D. Pugachev, S. M. Aldoshin, V. I. Minkin, J. Struct. Chem., 2016, 57, 1270; DOI: https://doi.org/10.1134/S0022476616060299.

    Article  CAS  Google Scholar 

  22. A. D. Pugachev, I. V. Ozhogin, N. I. Makarova, I. A. Rostovtseva, M. B. Lukyanova, A. S. Kozlenko, G. S. Borodkin, V. V. Tkachev, I. M. El-Sewify, I. V. Dorogan, A. V. Metelitsa, S. M. Aldoshin, B. S. Lukyanov, Dyes Pigm., 2022, 199, 110043; DOI: https://doi.org/10.1016/j.dyepig.2021.110043.

    Article  CAS  Google Scholar 

  23. A. S. Kozlenko, N. I. Makarova, I. V. Ozhogin, A. D. Pugachev, M. B. Lukyanova, I. A. Rostovtseva, G. S. Borodkin, N. V. Stankevich, A. V. Metelitsa, B. S. Lukyanov, Mendeleev Commun., 2021, 31, 403; DOI: https://doi.org/10.1016/j.mencom.2021.04.040.

    Article  CAS  Google Scholar 

  24. A. D. Pugachev, I. V. Ozhogin, M. B. Lukyanova, B. S. Lukyanov, A. S. Kozlenko, I. A. Rostovtseva, N. I. Makarova, V. V. Tkachev, S. M. Aldoshin, A. V. Metelitsa, J. Mol. Struct., 2021, 1229, 129615; DOI: https://doi.org/10.1016/j.molstruc.2020.129615.

    Article  CAS  Google Scholar 

  25. A. D. Pugachev, I. V. Ozhogin, M. B. Lukyanova, B. S. Lukyanov, I. A. Rostovtseva, I. V. Dorogan, N. I. Makarova, V. V. Tkachev, A. V. Metelitsa, S. M. Aldoshin, Spectrochim. Acta A, 2020, 230, 118041; DOI: https://doi.org/10.1016/j.saa.2020.118041.

    Article  CAS  Google Scholar 

  26. D. Wu, Y. Shen, J. Chen, G. Liu, H. Chen, J. Yin, Chin. Chem. Lett., 2017, 28, 1979; DOI: https://doi.org/10.1016/j.cclet.2017.07.004.

    Article  CAS  Google Scholar 

  27. X. Ma, C. Zhang, L. Feng, S. H. Liu, Y. Tan, J. Yin, J. Mater. Chem. B, 2020, 8, 9906; DOI: https://doi.org/10.1039/D0TB01890B.

    Article  CAS  PubMed  Google Scholar 

  28. N. G. Medeiros, C. A. Braga, V. S. Câmara, R. C. Duarte, F. S. Rodembusch, Asian J. Org. Chem., 2022, 11, e202200095; DOI: https://doi.org/10.1002/ajoc.202200095.

    CAS  Google Scholar 

  29. A. D. Pugachev, M. B. Lukyanova, B. S. Lukyanov, I. V. Ozhogin, A. S. Kozlenko, V. V. Tkachev, P. B. Chepurnoi, G. V. Shilov, V. I. Minkin, S. M. Aldosin, Dokl. Chem., 2020, 492, 76; DOI: https://doi.org/10.1134/S0012500820350013.

    Article  CAS  Google Scholar 

  30. J. S. Murray, P. Politzer, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1, 153; DOI: https://doi.org/10.1002/wcms.19.

    Article  CAS  Google Scholar 

  31. W. Tian, J. Tian, Dyes. Pigm., 2014, 105, 66; DOI: https://doi.org/10.1016/j.dyepig.2014.01.020.

    Article  CAS  Google Scholar 

  32. W. Yang, R. G. Parr, R. Pucci, J. Chem. Phys., 1984, 81, 2862; DOI: https://doi.org/10.1063/1.447964.

    Article  CAS  Google Scholar 

  33. C. Morell, A. Grand, A. Toro-Labbé, J. Phys. Chem. A, 2005, 109, 205; DOI: https://doi.org/10.1021/jp046577a.

    Article  CAS  PubMed  Google Scholar 

  34. J. I. Martínez-Araya, J. Math. Chem., 2015, 53, 451; DOI: https://doi.org/10.1007/s10910-014-0437-7.

    Article  Google Scholar 

  35. G. Bourhill, L.-T. Cheng, G. Lee, S. R. Marder, J. W. Perry, M. J. Perry, B. G. Tiemann, MRS Online Proceedings Library, 1993, 328, 625; DOI: https://doi.org/10.1557/proc-328-625.

    Article  Google Scholar 

  36. F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys., 2020, 152, 224108; DOI: https://doi.org/10.1063/5.0004608.

    Article  CAS  PubMed  Google Scholar 

  37. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73; DOI: https://doi.org/10.1002/wcms.81.

    Article  CAS  Google Scholar 

  38. A. D. Becke, J. Chem. Phys., 1993, 98, 5648; DOI: https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  39. W. J. Hehre, L. Random, P. v. R. Schleyer, J. A. Pople, in Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, p. 346.

    Google Scholar 

  40. J. Zhang, T. Lu, Phys. Chem. Chem. Phys., 2021, 23, 20323; DOI: https://doi.org/10.1039/D1CP02805G.

    Article  CAS  PubMed  Google Scholar 

  41. T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580; DOI: https://doi.org/10.1002/jcc.22885.

    Article  PubMed  Google Scholar 

  42. https://www.chemcraftprog.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kozlenko.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignment to the South Federal University (Reg. No. 0852-2020-00-19, synthesis of compound, structure determination by NMR spectroscopy, and quantum chemical modeling) and within the framework of the State Assignment to the Institute of Problems of Chemical Physics, Russian Academy of Sciences (Reg. No. AAAA-A19-119092390076-7, V. V. Tkachev, a vibrational spectroscopy study).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 4, pp. 979–989, April, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlenko, A.S., Pugachev, A.D., Ozhogin, I.V. et al. Condensation of formyl-substituted indoline spiropyrans with 3H-indolium salts: specific features. Russ Chem Bull 72, 979–989 (2023). https://doi.org/10.1007/s11172-023-3863-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3863-9

Key words

Navigation