Skip to main content
Log in

Hydrazine-assisted one-pot depropargylation and reduction of functionalized nitro calix[4]arenes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Calix[4]arene derivatives containing two or four O-propargyl moieties are capable of undergoing reductive depropargylation in the presence of hydrazine hydrate. The propargyl groups are removed in the form of 4,5-dihydro-1H-pyrazoles, which allowed proposing a reasonable mechanism for the depropargylation. The propargyl group can be used as the protection for the selective nitration at the distal positions of the upper rim of di-O-propargyl-substituted calix[4]arene and p-tert-butylcalix[4]arene. The reduction of nitro group at the upper rim proceeds along with the depropargylation upon the addition of a nickel catalyst to the reaction mixture with hydrazine hydrate, which leads to calixarenamines containing free hydroxy groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P. G. M. Wuts, Greene’s Protective Groups in Organic Synthesis, John Wiley & Sons, 2014, 1082 pp.; DOI: https://doi.org/10.1002/9781118905074.

  2. V. A. Burilov, I. M. Bogdanov, R. I. Garipova, A. A. Volodina, D. A. Mironova, V. G. Evtugyn, S. E. Solovieva, I. S. Antipin, Russ. Chem. Bull., 2022, 71, 131; DOI: https://doi.org/10.1007/s11172-022-3386-5.

    Article  CAS  Google Scholar 

  3. E. A. Vershinina, D. G. Kim, A. A. Osipov, Russ. Chem. Bull., 2021, 70, 391; DOI: https://doi.org/10.1007/s11172-021-3098-2.

    Article  CAS  Google Scholar 

  4. A. Yu. Aksinenko, T. V. Goreva, T. A. Epishina, Russ. Chem. Bull., 2021, 70, 487; DOI: https://doi.org/10.1007/s11172-021-3113-7.

    Article  CAS  Google Scholar 

  5. M. Ohkubo, S. Mochizuki, T. Sano, Y. Kawaguchi, S. Okamoto, Org. Lett., 2007, 9, 773; DOI: https://doi.org/10.1021/ol062963u.

    Article  CAS  PubMed  Google Scholar 

  6. M. Pal, K. Parasuraman, K. R. Yeleswarapu, Org. Lett., 2003, 5, 349; DOI: https://doi.org/10.1021/ol027382t.

    Article  CAS  PubMed  Google Scholar 

  7. D. Rambabu, S. Bhavani, N. K. Swamy, M. V. B. Rao, M. Pal, Tetrahedron Lett., 2013, 34, 1169; DOI: https://doi.org/10.1016/j.tetlet.2012.12.093.

    Article  Google Scholar 

  8. T. Zhang, S. Zheng, T. Kobayashi, H. Maekawa, Org. Lett., 2021, 23, 7129; DOI: https://doi.org/10.1021/acs.orglett.1c02532.

    Article  CAS  PubMed  Google Scholar 

  9. S. Olivero, E. Dunach, Tetrahedron Lett., 1997, 38, 6193; DOI: https://doi.org/10.1016/S0040-4039(97)01396-8.

    Article  CAS  Google Scholar 

  10. K. R. Prabhu, N. Devan, S. Chandrasekaran, Synlett, 2002, 11, 1762; DOI: https://doi.org/10.1055/s-2002-34863.

    Google Scholar 

  11. S. Rele, S. Talukdar, A. Banerji, Tetrahedron Lett., 1999, 40, 767; DOI: https://doi.org/10.1016/S0040-4039(98)02407-1.

    Article  CAS  Google Scholar 

  12. B. L. Oliveira, B. J. Stenton, V. B. Unnikrishnan, C. R. Almeida, J. Conde, M. Negrão, F. S. S. Schneider, C. Cordeiro, M. G. Ferreira, G. F. Caramori, J. B. Domingos, R. Fior, G. J. L. Bernardes, J. Am. Chem. Soc., 2020, 142, 10869; DOI: https://doi.org/10.1021/jacs.0c01622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Wang, F. Li, W. Pei, M. Yang, Y. Wu, D. Ma, F. Zhang J. Wang, Tetrahedron Lett., 2018, 59, 1902; DOI: https://doi.org/10.1016/j.tetlet.2018.03.046.

    Article  CAS  Google Scholar 

  14. M. Jbara, E. Eid, A. Brik, J. Am. Chem. Soc., 2020, 142, 8203; DOI: https://doi.org/10.1021/jacs.9b13216.

    Article  CAS  PubMed  Google Scholar 

  15. B. Nandi, K. Das, N. G. Kundu, Tetrahedron Lett., 2000, 41, 7259; DOI: https://doi.org/10.1016/S0040-4039(00)01253-3.

    Article  CAS  Google Scholar 

  16. R. Lavendomme, S. Zahim, G. D. Leener, A. Inthasot, A. Mattiuzzi, M. Luhmer, O. Reinaud, I. Jabin, Asian J. Org. Chem., 2015, 4, 710; DOI: https://doi.org/10.1002/ajoc.201500178.

    Article  CAS  Google Scholar 

  17. W. Verboom, A. Durie, R. J. M. Egberink, Z. Asfari, D. N. Reinhoudt, J. Org. Chem., 1992, 57, 1313; DOI: https://doi.org/10.1021/jo00030a050.

    Article  CAS  Google Scholar 

  18. J. D. Loon, A. Arduini, W. Verboom, R. Ungaro, G. J. Hummel, S. Harkem, D. N. Reinhoudt, Tetrahedron Lett., 1989, 30, 2681; DOI: https://doi.org/10.1016/S0040-4039(00)99097-X.

    Article  Google Scholar 

  19. Z. T. Huang, G. Q. Wang, L. M. Yang, Y. X. Lou, Synth. Commun., 1995, 25, 1109; DOI: https://doi.org/10.1080/00397919508012675.

    Article  CAS  Google Scholar 

  20. L. G. Yuan, L. Qian, L. Fang, W. X. Bin, Chin. J. Chem., 2000, 18, 207; DOI: https://doi.org/10.1002/cjoc.20000180214.

    Article  Google Scholar 

  21. J. Skácel, J. Budka V. Eigner, P. Lhoták, Tetrahedron Lett., 2015, 71, 1959; DOI: https://doi.org/10.1016/j.tet.2015.02.021.

    Article  Google Scholar 

  22. V. A. Burilov, R. N. Belov, R. I. Nugmanov, S. E. Solovieva, I. S. Antipin, Russ. Chem. Bull., 2022, 71, 1497; DOI: https://doi.org/10.1007/s11172-022-3556-5.

    Article  CAS  Google Scholar 

  23. M. J. Chetcuti, A. M. J. Devoille, A. B. Othman, R. Souane, P. Thuéryc, J. Vicens, J. Chem. Soc., Dalton Trans., 2009, 17, 2999; DOI: https://doi.org/10.1039/B821144B.

    Article  Google Scholar 

  24. D. J. Pasto, in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, 2001, p. 2; DOI: https://doi.org/10.1002/047084289X.rd235.

  25. E. J. Corey, W. L. Mock D. J. Pasto, Tetrahedron Lett., 1961, 2, 347; DOI: https://doi.org/10.1016/S0040-4039(01)91637-5.

    Article  Google Scholar 

  26. J. Moran, S. I. Gorelsky, E. Dimitrijevic, M. E. Lebrun, A. C. Bédard, C. Séguin, A. M. Beauchemin, J. Am. Chem. Soc., 2008, 130, 17893; DOI: https://doi.org/10.1021/ja806300r.

    Article  CAS  PubMed  Google Scholar 

  27. M. Patel, R. K. Saunthwal, A. K. Verma, Acc. Chem. Res., 2017, 50, 240; DOI: https://doi.org/10.1021/acs.accounts.6b00449.

    Article  CAS  PubMed  Google Scholar 

  28. V. A. Burilov, A. M. Valiyakhmetova, R. I. Aukhadieva, S. E. Solovieva, I. S. Antipin, Russ. J. Gen. Chem., 2017, 87, 1946; DOI: https://doi.org/10.1134/S1070363217090092.

    Article  CAS  Google Scholar 

  29. M. Backes, V. Böhmer, G. Ferguson, C. Grüttner, C. Schmidt, W. Vogt, K. Ziat, J. Chem. Soc., Perkin Trans. 2, 1997, 6, 1193; DOI: https://doi.org/10.1039/A607259C.

    Article  Google Scholar 

  30. N. K. Chun, K. D. Soon, Bull. Korean Chem. Soc., 1994, 15, 284; DOI: https://doi.org/10.5012/bkcs.1994.15.4.284.

    Google Scholar 

  31. C. Dordea, F. Brisach, J. Haddaoui, F. Arnaud-Neu, M. Bolte, A. Casnati, V. Böhmer, Supramol. Chem., 2010, 22, 347; DOI: https://doi.org/10.1080/10610271003678511.

    Article  CAS  Google Scholar 

  32. B. Tomapatanaget, T. Tuntulani, Tetrahedron Lett., 2001, 42, 8105; DOI: https://doi.org/10.1016/S0040-4039(01)01722-1.

    Article  CAS  Google Scholar 

  33. V. A. Burilov, G. A. Fatikhova, M. N. Dokuchaeva, R. I. Nugmanov, D. A. Mironova, P. V. Dorovatovskii, V. N. Khrustalev, S. E. Solovieva, I. S. Antipin, Beilstein J. Org. Chem., 2018, 14, 1980; DOI: https://doi.org/10.3762/bjoc.14.173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. K. Sharma, C. D. Gutsche, J. Org. Chem., 1999, 64, 998; DOI: https://doi.org/10.1021/jo980903z.

    Article  CAS  PubMed  Google Scholar 

  35. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, Elsevier, 2009, 743 pp.; DOI: https://doi.org/10.1016/C2009-0-26589-5.

  36. W. Xu, J. J. Vittal, R. J. Puddephatt, Can. J. Chem., 1996, 74, 766; DOI: https://doi.org/10.1139/v96-084.

    Article  CAS  Google Scholar 

  37. A. A. Muravev, A. S. Ovsyannikov, G. V. Konorov, D. R. Islamov, K. S. Usachev, A. S. Novikov, S. E. Solovieva, I. S. Antipin, Molecules, 2022, 27, 5178; DOI: https://doi.org/10.3390/molecules27165178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D. Gutsche, B. Dhawan, K. H. No, R. Muthukrishnan, J. Am. Chem. Soc., 1981, 103, 3782; DOI: https://doi.org/10.1021/ja00403a028.

    Article  CAS  Google Scholar 

  39. D. Gutsche, J. A. Levine, J. Am. Chem. Soc., 1982, 104, 2652; DOI: https://doi.org/10.1021/ja00373a060.

    Article  CAS  Google Scholar 

  40. D. He, L. Huang, J. Li, W. Wu, H. Jiang, Org. Lett. 2019, 21, 8308; DOI: https://doi.org/10.1021/acs.orglett.9b03066.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Burilov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was financially supported by the Russian Science Foundation (Project No. 22-13-00304).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 4, pp. 948––954, April, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burilov, V.A., Belov, R.N., Solovieva, S.E. et al. Hydrazine-assisted one-pot depropargylation and reduction of functionalized nitro calix[4]arenes. Russ Chem Bull 72, 948–954 (2023). https://doi.org/10.1007/s11172-023-3858-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3858-4

Key words

Navigation