Skip to main content
Log in

Nitro- and tetrazolopyrazines: modeling of the crystal structure and assessment of properties

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The crystal structures of a series of nitro- and tetrazolopyrazines were modeled quantum chemically and by the atom-atom potential method and their thermochemical, ballistic, and detonation characteristics were calculated. All compounds are characterized by rather high enthalpies of formation in the solid phase and by moderate molecular crystal densities (except 2,3,5,6-tetranitropyrazine having a high density of 1.995 g cm−3). The possibility to use the title compounds as high-energy materials was assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. A. Larin, N. V. Muravyev, A. N. Pivkina, K. Yu. Suponitsky, I. V. Ananyev, D. V. Khakimov, L. L. Fershtat, N. N. Makhova, Chem. Eur. J., 2019, 25, 4225; DOI: https://doi.org/10.1002/chem.201806378.

    Article  CAS  PubMed  Google Scholar 

  2. L. L. Fershtat, N. N. Makhova, ChemPlusChem, 2020, 85, 13; DOI: https://doi.org/10.1002/cplu.201900542.

    Article  CAS  Google Scholar 

  3. C. He, H. Gao, G. H. Imler, D. A. Parrish, J. M. Shreeve, J. Mater. Chem. A, 2018, 6, 9391; DOI: https://doi.org/10.1039/C8TA02274G.

    Article  CAS  Google Scholar 

  4. L. Zhai, F. Bi, Y. Luo, N. Wang, J. Zhang, B. Wang, Sci. Rep., 2019, 9, 4321; DOI: https://doi.org/10.1038/s41598-019-39723-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. R. Tsyshevsky, P. Pagoria, M. Zhang, A. Racoveanu, D. A. Parrish, A. S. Smirnov, M. M. Kuklja, J. Phys. Chem. C, 2015, 119, 3509; DOI: https://doi.org/10.1021/jp5118008.

    Article  CAS  Google Scholar 

  6. I. L. Dalinger, K. Yu. Suponitsky, T. K. Shkineva, D. B. Lempert, A. B. Sheremetev, J. Mater. Chem. A, 2018, 6, 14780; DOI: https://doi.org/10.1039/C8TA05179H.

    Article  CAS  Google Scholar 

  7. L. I. Vereschagin, F. A. Pokatilov, V. N. Kizhnyaev, Chem. Heterocycl. Compd., 2008, 44, 1; DOI: https://doi.org/10.1007/s10593-008-0017-5.

    Article  CAS  Google Scholar 

  8. A. A. Voronin, A. M. Churakov, M. S. Klenov, Yu. A. Strelenko, I. V. Fedyanin, V. A. Tartakovsky, Eur. J. Org. Chem., 2017, 33, 4963; DOI: https://doi.org/10.1002/ejoc.201700750.

    Article  Google Scholar 

  9. D. V. Khakimov, V. P. Zelenov, N. M. Baraboshkin, T. S. Pivina, J. Mol. Model., 2019, 25, 107; DOI: https://doi.org/10.1007/s00894-019-3986-7.

    Article  PubMed  Google Scholar 

  10. A. M. Churakov, V. A. Tartakovsky, Chem. Rev., 2004, 104, 2601; DOI: 1021/cr020094q.

    Article  CAS  PubMed  Google Scholar 

  11. Gospodinov, T. M. Klapötke, Eur. J. Org. Chem., 2018, 8, 1004; DOI: https://doi.org/10.1002/ejoc.201800068.

    Article  Google Scholar 

  12. I. Gospodinov, J. Singer, T. M. Klapötke, J. Stierstorfer, Z. Anorg. Allg. Chem., 2018, 645, 1247; DOI: https://doi.org/10.1002/zaac.201900146.

    Article  Google Scholar 

  13. T. G. Witkowski, E. Sebastiao, B. Gabidullin, A. Hu, F. Zhang, M. Murugesu, ACS Appl. Energy Mater., 2018, 1, 589; DOI: https://doi.org/10.1021/acsaem.7b00138.

    Article  CAS  Google Scholar 

  14. R. D. Gilardi, R. J. Butcher, Acta Cryst., 2001, E57, o657; DOI: https://doi.org/10.1107/S1600536801010352.

    Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016.

    Google Scholar 

  16. S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1, 211; DOI: https://doi.org/10.1002/wcms.30.

    Article  CAS  Google Scholar 

  17. D. V. Khakimov, V. P. Zelenov, T. S. Pivina, J. Comput. Chem., 2022, 43, 778; DOI: https://doi.org/10.1002/jcc.26833.

    Article  CAS  PubMed  Google Scholar 

  18. D. V. Khakimov, L. L. Fershtat, T. S. Pivina, N. N. Makhova, Phys. Chem. A, 2021, 125, 3920; DOI: https://doi.org/10.1021/acs.jpca.1c02960.

    Article  CAS  Google Scholar 

  19. J. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys., 2000, 112, 6532; DOI: https://doi.org/10.1063/1.481224.

    Article  CAS  Google Scholar 

  20. V. Fuchs, K. Karaghiosoff, T. M. Klapötke, J. Stierstorfer, M. Voggenreiter, Eur. J. Org. Chem., 2023, 26, e202201073; DOI: https://doi.org/10.1002/ejoc.202201073.

    Article  CAS  Google Scholar 

  21. M. Benz, T. M. Klapötke, J. Stierstorfer, ChemPlusChem, 2022, 87, e202200186; DOI: https://doi.org/10.1021/jacs.2c00995.

    Article  CAS  PubMed  Google Scholar 

  22. T. M. Klapötke, in Chemistry of High Energy Materials, Walter de Gruyter, Berlin—Boston, 2012, p. 89.

    Book  Google Scholar 

  23. D. V. Khakimov, I. L. Dalinger, T. S. Pivina, J. Comput. Theor. Chem., 2015, 1063, 24.

    Article  CAS  Google Scholar 

  24. D. V. Khakimov, A. V. Dzyabchenko, T. S. Pivina, Russ. Chem. Bull., 2020, 69, 212; DOI: https://doi.org/10.1007/s11172-020-2748-0.

    Article  CAS  Google Scholar 

  25. D. V. Khakimov, A. V. Dzyabchenko, T. S. Pivina, Propellants, Explos., Pyrotech., 2019, 44, 1528; DOI: https://doi.org/10.1002/prep.201900252.

    Article  CAS  Google Scholar 

  26. F. A. Momany, L. M. Carruthers, R. F. McGuire, H. A. Scheraga, J. Phys. Chem., 1974, 78, 1595; DOI: https://doi.org/10.1021/j100609a005.

    Article  CAS  Google Scholar 

  27. A. V. Dzyabchenko, Russ. J. Phys. Chem. A, 2008, 82, 758; DOI: https://doi.org/10.1134/S0036024408050129.

    Article  CAS  Google Scholar 

  28. A. V. Dzyabchenko, Russ. J. Phys. Chem. A, 2008, 82, 1663; DOI: https://doi.org/10.1134/S0036024408100075.

    Article  CAS  Google Scholar 

  29. M. Kamlet, S. Jacobs, J. Chem. Phys., 1968, 48, 23; DOI: https://doi.org/10.1063/1.1667908.

    Article  CAS  Google Scholar 

  30. V. K. Belsky, O. N. Zorkaya, P. M. Zorky, Acta Cryst. A, 1995, 51, 473; DOI: https://doi.org/10.1107/S0108767394013140.

    Article  Google Scholar 

  31. A. J. Cruz-Cabeza, E. Pidcock, G. M. Day, W. D. S. Motherwell, W. Jones, Cryst. Eng. Commun., 2007, 9, 556; DOI: https://doi.org/10.1039/B702073B.

    Article  Google Scholar 

  32. C. Xue, J. Sun, B. Kang, Y. Liu, X. Liu, G. Song, Q. Xue, Propellants, Explos., Pyrotech., 2010, 35, 333; DOI: https://doi.org/10.1002/prep.200900036.

    Article  CAS  Google Scholar 

  33. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst., 2008, 41, 466; DOI: https://doi.org/10.1107/S0021889807067908.

    Article  CAS  Google Scholar 

  34. J. Li, Y. Huang, H. Dong, Propellants, Explos., Pyrotech., 2004, 29, 231; DOI: https://doi.org/10.1002/prep.200400052.

    Article  CAS  Google Scholar 

  35. B. G. Trusov, Proc. XIV Int. Symp. on Chemical Thermodynamics, St-Petersburg, 2002, 483.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Khakimov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

The authors express their gratitude to A. V. Dzyabchenko for kindly providing access to the software for modeling the crystal structures of chemical compounds.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 4, pp. 847–852, April, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakimov, D.V., Degtyarev, S.A. & Pivina, T.S. Nitro- and tetrazolopyrazines: modeling of the crystal structure and assessment of properties. Russ Chem Bull 72, 847–852 (2023). https://doi.org/10.1007/s11172-023-3848-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3848-3

Key words

Navigation