Skip to main content

Advertisement

Log in

High-strength tapes prepared by the solid-state processing of nascent reactor powders of ultrahigh molecular weight polyethylene

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Structural studies were carried out and physicomechanical characteristics of samples of ultrahigh molecular weight polyethylene (UHMWPE) were determined for successive stages (compacting/monolithization—orientational stretching) of the continuous solid-state processing of nascent reactor powders of UHMWPE (RP UHMWPE) into high-strength tapes. The use of nascent RP UHMWPE with the morphology, molecular weight, and bulk density optimal for solid-state processing makes it possible to obtain high-strength (∼3 GPa) and high-modulus (120–130 GPa) tapes. The conditions for both compacting/monolithization and the orientational stretching have a significant effect on the structure and properties of highly oriented tapes and can be optimized in order to prepare materials with a complex of the highest elastic-strength characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. Patel, S. H. Chikkali, S. Sivaram, Prog. Polym. Sci., 2020, 109, 101290; DOI: https://doi.org/10.1016/j.progpolymsci.2020.101290.

    Article  CAS  Google Scholar 

  2. M. I. Valueva, A. S. Kolobkov, S. S. Malakhovskii, Trudy VIAM [Works of All-Russia Research Institute of Aviation Materials], 2020, 87, 49; DOI: https://doi.org/10.18577/2307-6046-2020-0-3-49-57 (in Russian).

    Google Scholar 

  3. R. S. Porter, T. Kanamoto, A. E. Zachariades, Polymer, 1994, 35, 4979; DOI: https://doi.org/10.1016/0032-3861(94)90652-1.

    Article  CAS  Google Scholar 

  4. R. S. Porter, L. H. Wang, J. Macromol. Sci., Part C, 1995, 35, 63; DOI: https://doi.org/10.1080/15321799508014590.

    Article  Google Scholar 

  5. P. Smith, P. J. Lemstra, H. C. Booij, J. Polym. Sci., Polym. Phys. Ed., 1981, 19, 877; DOI: https://doi.org/10.1002/pol.1981.180190514.

    Article  CAS  Google Scholar 

  6. P. Smith, P. J. Lemstra, J. Polym. Sci., Polym. Phys. Ed., 1981, 19, 1007; DOI: https://doi.org/10.1002/pol.1981.180190610.

    Article  CAS  Google Scholar 

  7. A. J. Pennings, R. J. Van der Hooft, A. R. Postema, W. Hoogsteen, G. Ten Brinke, Polym. Bull., 1986, 16, 167; DOI: https://doi.org/10.1007/BF00955487.

    Article  CAS  Google Scholar 

  8. P. Smith, H. D. Chanzy, B. P. Rotzinger, J. Mater. Sci., 1987, 22, 523; DOI: https://doi.org/10.1007/BF01160764.

    Article  CAS  Google Scholar 

  9. T. Kanamoto, T. Ohama, K. Tanaka, M. Takeda, R. S. Porter, Polymer, 1987, 28, 1517; DOI: https://doi.org/10.1016/0032-3861(87)90352-1.

    Article  CAS  Google Scholar 

  10. L. H. Wang, R. S. Porter, J. Appl. Polymer Sci., 1991, 43, 1559; DOI: https://doi.org/10.1002/app.1991.070430819.

    Article  CAS  Google Scholar 

  11. V. I. Selikhova, Yu. A. Zubov, E. A. Sinevich, S. N. Chvalun, N. I. Ivancheva, O. V. Smol’yanova, S. S. Ivanchev, N. F. Bakeev, Vysokomol. Soedin., Ser. A [Polymer Sci. USSR, Ser. A], 1992, 34, 92 (in Russian).

    CAS  Google Scholar 

  12. Y. L. Joo, H. Zhou, S. G. Lee, H. K. Lee, J. K. Song, J. Appl. Polymer Sci., 2005, 98, 718; DOI: https://doi.org/10.1002/app.22076.

    Article  CAS  Google Scholar 

  13. H. Uehara, R. Yoshida, M. Kakiage, T. Yamanobe, T. Komoto, Ind. Eng. Chem. Res., 2006, 45, 7801; DOI: https://doi.org/10.1021/ie060821y.

    Article  CAS  Google Scholar 

  14. G. Michler, V. Seydewitz, M. Buschnakowski, L. Myasnikowa, E. Ivan’kova, V. Marikhin, Y. Boiko, S. Goerlitz, J. Appl. Polym. Sci., 2010, 118, 866; DOI: https://doi.org/10.1002/app.32346.

    CAS  Google Scholar 

  15. S. Rastogi, Y. Yao, S. Ronca, J. Bos, J. Van der Eem, Macromolecules, 2011, 44, 5558; DOI: https://doi.org/10.1021/ma200667m.

    Article  CAS  Google Scholar 

  16. A. N. Ozerin, S. S. Ivanchev, S. N. Chvalun, V. A. Aulov, N. I. Ivancheva, N. F. Bakeev, Polymer Sci., Ser. A, 2012, 54, 950; DOI: https://doi.org/10.1134/S0965545X12100033.

    Article  CAS  Google Scholar 

  17. O. V. Lebedev, A. N. Ozerin, A. S. Kechek’yan, V. G. Shevchenko, T. S. Kurkin, E. K. Golubev, E. A. Karpushkin, V. G. Sergeev, Polym. Composites, 2019, 40, E146; DOI: https://doi.org/10.1002/pc.24532.

    Article  CAS  Google Scholar 

  18. S. Ronca, G. Forte, H. Tjaden, S. Rastogi, Ind. Eng. Chem. Res., 2015, 54, 7373; DOI: https://doi.org/10.1021/acs.iecr.5b01469.

    Article  CAS  Google Scholar 

  19. D. Romano, N. Tops, J. Bos, S. Rastogi, Macromolecules, 2017, 50, 2033; DOI: https://doi.org/10.1021/acs.macromol.6b02339.

    Article  CAS  Google Scholar 

  20. P. Dong, Q. Zhang, K. Wang, B.-H. Zhu, W. Su, J.-F. Li, Q. Fu, Polymer, 2021, 215, 123352; DOI: https://doi.org/10.1016/j.polymer.2020.123352.

    Article  CAS  Google Scholar 

  21. G. Weedon, in High-performance Fibres, Ed. J. W. S. Hearl, Woodhead Publishing, Cambridge, 2001, p. 132.

    Google Scholar 

  22. J. Singletary, B. Lauke, in Advanced Fibrous Composite Materials for Ballistic Protection, Ed. X. Chen, Cambridge, Woodhead Publishing, 2016, p. 389; DOI:/https://doi.org/10.1016/B978-1-78242-461-1.00013-3.

    Chapter  Google Scholar 

  23. A. N. Ozerin, E. K. Golubev, S. S. Ivanchev, V. A. Aulov, A. S. Kechek’yan, T. S. Kurkin, E. M. Ivan’kova, N. Yu. Adonin, Polym. Sci., Ser. A, 2022, 64, 73; DOI: https://doi.org/10.1134/S0965545X22020067.

    Article  CAS  Google Scholar 

  24. A. N. Ozerin, Y. A. Zubov, Polymer Sci. USSR, 1984, 26, 440; DOI: https://doi.org/10.1016/0032-3950(84)90126-6.

    Article  Google Scholar 

  25. A. N. Ozerin, S. A. Ivanov, S. N. Chvalun, Yu. A. Zubov, Industrial Laboratory, 1986, 52, 25.

    Google Scholar 

  26. A. N. Ozerin, T. S. Kurkin, L. A. Ozerina, V. Yu. Dolmatov, Cryst. Rep., 2008, 53, 60; DOI: https://doi.org/10.1134/S1063774508010070.

    Article  CAS  Google Scholar 

  27. S. N. Chvalun, A. N. Ozerin, V. I. Selikhova, Yu. A. Zubov, N. F. Bakeyev, Polymer Sci. USSR., 1985, 27, 1550; DOI: https://doi.org/10.1016/0032-3950(85)90344-2.

    Article  Google Scholar 

  28. S. V. Kidalov, F. M. Shakhov, A. Ya. Vul’, A. N. Ozerin, Diam. Relat. Mater., 2010, 19, 976; DOI: https://doi.org/10.1016/j.diamond.2010.03.004.

    Article  CAS  Google Scholar 

  29. Z. W. Wilchinsky, J. Polym. Sci., Part. A, 1968, 6, 281; DOI: https://doi.org/10.1002/pol.1968.160060118.

    Article  CAS  Google Scholar 

  30. T. Kanamoto, A. Tsuruta, K. Tanaka, M. Takeda, R. S. Porter, Macromolecules, 1988, 21, 470; DOI: https://doi.org/10.1021/ma00180a032.

    Article  CAS  Google Scholar 

  31. M. B. Konstantinopolskaya, S. N. Chvalun, V. I. Selikhova, A. N. Ozerin, Yu. A. Zubov, N. F. Bakeev, Vysokomol. Soedin., Ser. B [Sov. J. Macromol. Compds, Ser. B], 1985, 27, 538 (in Russian).

    CAS  Google Scholar 

  32. D. Sawai, K. Nagai, M. Kubota, T. Ohama, T. Kanamoto, J. Polym. Sci., Part B, 2005, 44, 153; DOI: https://doi.org/10.1002/polb.20682.

    Article  Google Scholar 

  33. A. G. Gibson, G. R. Davies, I. M. Ward, Polymer, 1978, 19, 683; DOI: https://doi.org/10.1016/0032-3861(78)90123-4.

    Article  CAS  Google Scholar 

  34. Y. A. Zubov, S. N. Chvalun, V. I. Selikhova, M. B. Konstantinopolskaya, N. Ph. Bakeev, Polym. Eng. Sci., 1992, 32, 1316; DOI: https://doi.org/10.1002/pen.760321720.

    Article  CAS  Google Scholar 

  35. A. Peterlin, Polym. Eng. Sci., 1978, 18, 488; DOI: https://doi.org/10.1002/pen.760180611.

    Article  CAS  Google Scholar 

  36. V. Marikhin, L. Myasnikova, Yu. Boiko, E. Ivan’kova, E. Radovanova, P. Yakushev P., in Reactor Powder Morphology, Eds. L. Myasnikova, P. J. Lemstra, Nova Science Publishers, Inc., New York, 2011, p. 235.

    Google Scholar 

  37. V. A. Tuskaev, V. S. Bogdanov, S. Ch. Gagieva, D. A. Kurmaev, S. S. Shatokhin, V. E. Simikin, M. D. Evseeva, E. K. Golubev, M. I. Buzin, G. G. Nikiforova, B. M. Bulychev, Russ. Chem. Bull., 2022, 71, 76; DOI: https://doi.org/10.1007/s11172-022-3379-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Golubev.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (theme FFSM-2021-0006).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 3, pp. 749–763, March, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, E.K., Kurkin, T.S. & Ozerin, A.N. High-strength tapes prepared by the solid-state processing of nascent reactor powders of ultrahigh molecular weight polyethylene. Russ Chem Bull 72, 749–763 (2023). https://doi.org/10.1007/s11172-023-3839-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3839-3

Key words

Navigation