Skip to main content
Log in

New acetylenic derivatives of bile acids as versatile precursors for the preparation of prodrugs. Synthesis and cytotoxicity study

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Three groups of bile acid derivatives with acetylenic moieties, such as propargyl, hex-5-ynoyl, and 4,7,10,13-tetraoxahexadec-15-ynoyl ones, were obtained. The cytotoxic activity of the synthesized compounds against hepatocellular carcinoma (HepG2, Huh7), prostate cancer (PC3), and human embryonic kidney (HEK293) cell lines was studied. The parameters enabling estimation of the total lipophilicity of the synthesized bile acid derivatives (logP, TPSA) were calculated. The correlation between the cytotoxic activity and hydrophilic-lipophilic balance of the synthesized compounds was determined. A physicochemical mechanism for the cytotoxic action of bile acid derivatives is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Schwarz, N. M. Xavier, R. Csuk, A. P. Rauter, Carbohydr. Chem., 2012, 37, 326; DOI: https://doi.org/10.1039/9781849732765-00326.

    Article  CAS  Google Scholar 

  2. D. B. Salunke, B. G. Hazra, V. S. Pore, Curr. Med. Chem., 2006, 13, 813; DOI: https://doi.org/10.2174/092986706776055562.

    Article  CAS  PubMed  Google Scholar 

  3. K. N. Lazaridis, G. J. Gores, K. D. Lindor, J. Hepatol., 2001, 35, 134; DOI: https://doi.org/10.1016/s0168-8278(01)00092-7.

    Article  CAS  PubMed  Google Scholar 

  4. A. Thakur, A. Roy, A. Ghosh, M. Chhabra, S. Banerjee, Biomed. Pharmacother., 2018, 101, 211; DOI: https://doi.org/10.1016/j.biopha.2018.02.067.

    Article  CAS  PubMed  Google Scholar 

  5. K. B. Tuem, T. M. Atey, Front. Neurol., 2017, 8, 442; DOI: https://doi.org/10.3389/fneur.2017.00442.

    Article  PubMed  PubMed Central  Google Scholar 

  6. F. M. Manzella, D. F. Covey, V. Jevtovic-Todorovic, S. M. Todorovic, J. Neuroendocrinol., 2021, 34, 13086; DOI: https://doi.org/10.1111/jne.13086.

    Google Scholar 

  7. R. Cerne, A. Lippa, M. M. Poe, J. L. Smith, X. Jin, X. Ping, L. K. Golani, J. M. Cook, J. M. Witkin, Pharmacol. Ther., 2022, 234, 108035; DOI: https://doi.org/10.1016/j.pharmthera.2021.108035.

    Article  CAS  PubMed  Google Scholar 

  8. Y. N. Lamb, Drugs, 2022, 82, 933; DOI: https://doi.org/10.1007/s40265-022-01724-0.

    Article  CAS  PubMed  Google Scholar 

  9. L. Zangerolamo, J. F. Vettorazzi, L. R. O. Rosa, E. M. Carneiro, H. C. L. Barbosa, Life Sci., 2021, 272, 119252; DOI: https://doi.org/10.1016/j.lfs.2021.119252.

    Article  CAS  PubMed  Google Scholar 

  10. A. G. Kohli, P. H. Kierstead, V. J. Venditto, C. L. Walsh, F. C. Szoka, J. Control. Release, 2014, 190, 274; DOI: https://doi.org/10.1016/j.jconrel.2014.04.047.

    Article  CAS  PubMed  Google Scholar 

  11. F. Ercole, M. R. Whittaker, J. F. Quinn, T. P. Davis, Biomacromolecules, 2015, 16, 1886; DOI: https://doi.org/10.1021/acs.biomac.5b00550.

    Article  CAS  PubMed  Google Scholar 

  12. D. Irby, Ch. Du, F. Li., Mol. Pharm., 2017, 14, 1325; DOI: https://doi.org/10.1021/acs.molpharmaceut.6b01027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Mrozek, L. Dvorakova, Z. Mandelova, L. Rarova, A. Rezacova, L. Placek, R. Opatrilova, J. Dohnal, O. Paleta, V. Kral, P. Drasar, J. Jampilek, Steroids, 2011, 76, 1082; DOI: https://doi.org/10.1016/j.steroids.2011.04.014.

    Article  CAS  PubMed  Google Scholar 

  14. R. Bansal, A. Suryan, ACS Bio Med Chem Au, 2022, 2, 340; DOI: https://doi.org/10.1021/acsbiomedchemau.1c00071.

    Article  CAS  Google Scholar 

  15. W. Kramer, Biol. Chem., 2011, 392, 77; DOI: https://doi.org/10.1515/bc.2011.017.

    Article  CAS  PubMed  Google Scholar 

  16. K. Lei, M. Yuan, T. Zhou, Q. Ye, B. Zeng, Q. Zhou, A. Wei, L. Guo, Steroids, 2021, 173, 108879; DOI: https://doi.org/10.1016/j.steroids.2021.108879.

    Article  CAS  PubMed  Google Scholar 

  17. C. Faustino, C. Serafim, P. Rijo, C. P. Reis, Expert Opin. Drug Delivery, 2016, 13, 1133; DOI: https://doi.org/10.1080/17425247.2016.1178233.

    Article  CAS  Google Scholar 

  18. N. Pavlovic, S. Golocorbin-Kon, M. Danic, B. Stanimirov, H. Al-Salami, K. Stankov, M. Mikov, Front. Pharmacol., 2018, 9, 1283; DOI: https://doi.org/10.3389/fphar.2018.01283.

    Article  PubMed  PubMed Central  Google Scholar 

  19. A. T. M. e Silva, A. L. C. Maia, J. de Oliveira Silva, A. L. B. de Barros, D. C. F. Soares, M. T. Q. de Magalhaes, R. Jose Alves, G. A. Ramaldes, Carbohydr. Res., 2018, 465, 52; DOI: https://doi.org/10.1016/j.carres.2018.06.008.

    Article  CAS  PubMed  Google Scholar 

  20. J. Pokorny, L. Borkova, M. Urban, Curr. Med. Chem., 2018, 25, 636; DOI: https://doi.org/10.2174/0929867324666171009122612.

    Article  CAS  PubMed  Google Scholar 

  21. K. Kacprzak, I. Skiera, M. Piasecka, Z. Paryzek, Chem. Rev., 2016, 116, 5689; DOI: https://doi.org/10.1021/acs.chemrev.5b00302.

    Article  CAS  PubMed  Google Scholar 

  22. A. Siddiq, V. Dembitsky, Anti-Cancer Agents Med. Chem., 2008, 8, 132; DOI: https://doi.org/10.2174/187152008783497073.

    Article  CAS  Google Scholar 

  23. M. A. Lesniewska-Kowiel, I. Muszalska, Eur. J. Med. Chem., 2017, 129, 53; DOI: https://doi.org/10.1016/j.ejmech.2017.02.011.

    Article  CAS  PubMed  Google Scholar 

  24. A. A. D’Souza, V. M. Joshi, P. V. Devarajan, Adv. Deliv. Sci. Technol., 2015, 6, 197; DOI: https://doi.org/10.1007/978-3-319-11355-5_6.

    Article  Google Scholar 

  25. P. V. Devarajan, S. Jain, Targeted Drug Delivery: Concepts and Design, Springer, New York, 2015, 790 pp.; DOI: https://doi.org/10.1007/978-3-319-11355-5.

    Book  Google Scholar 

  26. M. C. Garnett, Adv. Drug Delivery Rev., 2001, 53, 171; DOI: https://doi.org/10.1016/S0169-409X(01)00227-7.

    Article  CAS  Google Scholar 

  27. K. Poelstra, J. Prakash, L. Beljaars, J. Control. Release, 2012, 161, 188; DOI: https://doi.org/10.1016/j.jconrel.2012.02.011.

    Article  CAS  Google Scholar 

  28. D. Bhunia, P. M. C. Pallavi, S. R. Bonam, S. A. Reddy, Y. Verma, M. S. K. Halmuthur, CArh. Pharm. Chem. Life Sci., 2015, 348, 689; DOI: https://doi.org/10.1002/ardp.201500143.

    Article  CAS  Google Scholar 

  29. D. Bhunia, P. M. C. Pallavi, S. R. Bonam, S. A. Reddy, Y. Verma, M. S. K. Halmuthur, CArh. Pharm. Chem. Life Sci., 2015, 348, 689; DOI: https://doi.org/10.1002/ardp.201500143.

    Article  CAS  Google Scholar 

  30. V. Maggi, F. Bianchini, E. Portioli, S. Peppicelli, M. Lulli, D. Bani, R. Del Sole, F. Zanardi, A. Sartori, R. Fiammengo, Chem. Eur. J., 2018, 24, 12093; DOI: https://doi.org/10.1002/chem.201801823.

    Article  CAS  PubMed  Google Scholar 

  31. D. Hwang, N. Nilchan, A. R. Nanna, X. Li, M. D. Cameron, W. R. Roush, H. Park, Ch. Rader, Cell Chem. Biol., 2019, 26, 1229; DOI: https://doi.org/10.1016/j.chembiol.2019.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. F. Nadeau, M. Sindt, N. Oget, New J. Chem., 2015, 39, 9155; DOI: https://doi.org/10.1039/C5NJ02223A.

    Article  CAS  Google Scholar 

  33. Ch. A. G. N. Montalbetti, V. Falque, Tetrahedron, 2005, 61, 10827; DOI: https://doi.org/10.1016/j.tet.2005.08.031.

    Article  CAS  Google Scholar 

  34. E. Yu. Yamansarov, I. V. Saltykova, S. V. Kovalev, R. A. Petrov, D. O. Shkil’, E. I. Seleznev, E. K. Beloglazkina, A. G. Majouga, Russ. Chem. Bull., 2019, 68, 855; DOI: https://doi.org/10.1007/s11172-019-2496-1.

    Article  CAS  Google Scholar 

  35. T. Mosmann, J. Immunol. Methods, 1983, 65, 55; DOI: https://doi.org/10.1016/0022-1759(83)90303-4.

    Article  CAS  PubMed  Google Scholar 

  36. H. Pajouhesh, G. R. Lenz, NeuroRx, 2005, 2, 541; DOI: https://doi.org/10.1602/neurorx.2.4.541.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. R. Pavley.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

Compounds were synthesized under the financial support from the Council for Grants at the President of the Russian Federation (grant MK-1450.2021.1.3). The works on cytotoxicity studies were financially supported by the Russian Science Foundation (project No. 20-14-00312).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 3, pp. 724–739, March, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavley, Y.R., Yamansarov, E.Y., Evteev, S.A. et al. New acetylenic derivatives of bile acids as versatile precursors for the preparation of prodrugs. Synthesis and cytotoxicity study. Russ Chem Bull 72, 724–739 (2023). https://doi.org/10.1007/s11172-023-3837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3837-1

Key words

Navigation