Skip to main content
Log in

Heteropentacyclic quinoxalino[2,3-b]phenoxazines: the synthesis, optoelectronic, and electrochemical properties

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of new derivatives comprising heteropentacyclic 12H-quinoxalino[2,3-b]-phenoxazine (QOPO) system and functionalized with arylamide anchoring groups was synthesized. Their photostability as well as the spectral, luminescent, electrochemical, and optoelectronic properties were studied both in composites prepared by adsorption of QOPO onto the TiO2 surface and in solution. Attachment of the amide anchoring groups to the QOPO core provides high adsorption of the compounds and the onset of photovoltaic properties that were not observed in the unfunctionalized precursors. However, these groups do not provide efficient injection of excited electrons into the conduction band of the semiconductor. According to B3LYP/6-311++G(d,p) density functional calculations of the model nanoclusters QOPO/(TiO2)10, efficient electron injection and, as a consequence, high photovoltaic conversion efficiency of dye-sensitized solar cells require delocalization of the LUMO of the QOPO/TiO2 system over both structural fragments. Relevant anchoring groups are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev., 2010, 110, 6595; DOI: https://doi.org/10.1021/cr900356p.

    Article  CAS  PubMed  Google Scholar 

  2. M. Yahya, A. Bouziani, C. Ocak, Z. Seferoglu, M. Sillanpa, Dyes Pigm., 2021, 192, 109227; DOI: https://doi.org/10.1016/j.dyepig.2021.109227.

    Article  CAS  Google Scholar 

  3. Y. Li, W. Huang, D. Zhao, L. Wang, Z. Jiao, Q. Huang, P. Wang, M. Sun, G. Yuan, Molecules, 2022, 27, 1800; DOI: https://doi.org/10.3390/molecules27061800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Nicolas, F. Allama, M. Lepeltier, J. Massin, F. Castet, L. Ducasse, L. Hirsch, Z. Boubegtiten, G. Jonusauskas, C. Olivier, T. Toupance, Chem. Eur. J., 2014, 20, 3678; DOI: https://doi.org/10.1002/chem.201303775.

    Article  CAS  PubMed  Google Scholar 

  5. G. Gruntz, H. Lee, L. Hirsch, F. Castet, T. Toupance, A. L. Briseno, Y. Nicolas, Adv. Electron. Mater., 2015, 1, 1500072; DOI: https://doi.org/10.1002/aelm.201500072.

    Article  Google Scholar 

  6. X. Gong, P. Han, H. Wen, Y. Sun, X. Zhang, H. Yang, B. Lin, Eur. J. Org. Chem., 2017, 25, 3689; DOI: https://doi.org/10.1002/ejoc.201700393.

    Article  Google Scholar 

  7. E. P. Ivakhnenko, G. V. Romanenko, N. I. Makarova, A. A. Kovalenko, P. A. Knyazev, I. A. Rostovtseva, A. G. Starikov, V. I. Minkin, Dyes Pigm., 2020, 176, 108174; DOI: https://doi.org/10.1016/j.dyepig.2019.108174.

    Article  CAS  Google Scholar 

  8. F. Allama, N. Gherraf, Y. Nicolas, T. Toupance, D. Khatmi, Acta Sci. Nature, 2019, 6, 42; DOI: https://doi.org/10.2478/asn-2019-0006.

    CAS  Google Scholar 

  9. E. P. Ivakhnenko, G. V. Romanenko, A. A. Kovalenko, Yu. V. Revinskii, P. A. Knyazev, V. A. Kuzmin, V. I. Minkin, Dyes Pigm., 2018, 150, 97; DOI: https://doi.org/10.1016/j.dyepig.2017.11.009.

    Article  CAS  Google Scholar 

  10. E. P. Ivakhnenko, P. A. Knyazev, N. I. Omelichkin, N. I. Makarova, A. G. Starikov, A. E. Aleksandrov, A. V. Ezhov, A. R. Tameev, O. P. Demidov, V. I. Minkin, Dyes Pigm., 2022, 197, 109848; DOI: https://doi.org/10.1016/j.dyepig.2021.109848.

    Article  CAS  Google Scholar 

  11. A. A. Gorodetsky, M. Cox, N.J. Tremblay, I. Kymissis, C. Nuckolls, Chem. Mater., 2009, 21, 4090; DOI: https://doi.org/10.1021/cm9016134.

    Article  CAS  Google Scholar 

  12. J. J. Hwang, C. D. Sunesh, M. Chandran, J. Lee, Y. Choe, Organic Electronics, 2012, 13, 1809; DOI: https://doi.org/10.1016/j.orgel.2012.05.042.

    Article  CAS  Google Scholar 

  13. H. Masui, M. M. Maitani, S. Fuse, A. Yamamura, Y. Ogomi, S. Hayase, T. Kaiho, H. Tanaka, Y. Wada, T. Takahashi, Asian J. Org. Chem., 2018, 7, 458; DOI: https://doi.org/10.1002/ajoc.201700542.

    Article  CAS  Google Scholar 

  14. L. Zhang, X. Yang, S. Li, A. Hagfeldt, L. Sun, Solar RRL., 2020, 4, 1900436; DOI: https://doi.org/10.1002/solr.201900436.

    Article  CAS  Google Scholar 

  15. Z. Wu, W. Ma, S. Meng, X. Li, J. Li, Q. Zou, J. Hua, H. Tian, RSC Adv., 2016, 6, 74039; DOI: https://doi.org/10.1039/C6RA04915J.

    Article  CAS  Google Scholar 

  16. G. A. Abakumov, N. O. Druzhkov, Yu. A. Kurskii, L. G. Abakumova, A. S. Shavyrin, G. K. Fukin, A. I. Poddel’skii, V. K. Cherkasov, L. S. Okhlopkova, Russ. Chem. Bull., 2005, 54, 2571; DOI: https://doi.org/10.1007/s11172-006-0157-7.

    Article  CAS  Google Scholar 

  17. S. R. Meech, D. Phillips, J. Photochem., 1983, 23, 193; DOI: https://doi.org/10.1016/0047-2670(83)80061-6.

    Article  CAS  Google Scholar 

  18. M. H. Deniel, D. Lavabre, J. C. Micheau, in Organic Photochromic and Thermochromic Compounds, Vol. 2, Eds J. C. Crano and R. J. Guglielmetti, Kluwer Academic Publishers, New York, 2002, p. 167.

    Chapter  Google Scholar 

  19. P. Meallier, S. Guittonneau, C. Emmelin, T. Konstantinova, Dyes Pigm., 1999, 40, 95; DOI: https://doi.org/10.1016/S0143-7208(98)00040-0.

    Article  CAS  Google Scholar 

  20. D. A. Makarov, N. A. Kuznetsova, O. L. Kaliya, Russ. J. Phys. Chem., 2006, 80, 268; DOI: https://doi.org/10.1134/S0036024406020270.

    Article  CAS  Google Scholar 

  21. J. Shen, Y. Li, J.-H. He, Dyes Pigm., 2016, 127, 187; DOI: https://doi.org/10.1016/j.dyepig.2015.11.029.

    Article  CAS  Google Scholar 

  22. L. Zhang, J. M. Cole, C. Dai, ACS Appl. Mater. Interfaces, 2014, 6, 7535; DOI: https://doi.org/10.1021/am502186k.

    Article  CAS  PubMed  Google Scholar 

  23. W.-C. Chen, S. Nachimuthu, J.-C. Jiang, Sci. Repts., 2017, 7, 4979; DOI: https://doi.org/10.1038/s41598-017-05408-8.

    Article  Google Scholar 

  24. N. N. Ghosh, M. Habib, A. Pramanik, P. Sarkar, S. Pal, New J. Chem., 2019, 43, 6480; DOI: https://doi.org/10.1039/C8NJ05409F.

    Article  CAS  Google Scholar 

  25. A. Pirashanthan, M. Thanihaichelvan, K. Mariappan, D. Velauthapillai, P. Ravirajan, R. Shivatharsiny, Solar Energy, 2021, 225, 399; DOI: https://doi.org/10.1016/j.solener.2021.07.056.

    Article  CAS  Google Scholar 

  26. C. A. Parker, W. T. Rees, Analyst, 1960, 85, 587.

    Article  CAS  Google Scholar 

  27. D. Magde, J. H. Brannon, T. L. Cremers, J. Olmsted, J. Phys. Chem., 1979, 83, 696; DOI: https://doi.org/10.1021/j100469a012.

    Article  CAS  Google Scholar 

  28. CrysAlisPro, version 1.171.38.41; Rigaku Oxford Diffraction; https://www.rigaku.com/en/products/smc/crysalis; 2015.

  29. G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112; DOI: https://doi.org/10.1107/S0108767307043930.

    Article  CAS  PubMed  Google Scholar 

  30. G. M. Sheldrick, Acta Crystallogr. C — Struct. Chem., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  PubMed  PubMed Central  Google Scholar 

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A. 03, Gaussian, Wallingford, 2016.

    Google Scholar 

  32. A. D. Becke, J. Chem. Phys., 1993, 98, 5648; DOI: https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  33. Chemcraft, version 1.8, 2014; http://www.chemcraft-prog.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Minkin, P. A. Knyazev or O. P. Demidov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was financially supported by the Russian Science Foundation (Project No. 19-13-00022, https://rscf.ru/project/19-13-00022/).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 3, pp. 669–680, March, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minkin, V.I., Knyazev, P.A., Omelichkin, N.I. et al. Heteropentacyclic quinoxalino[2,3-b]phenoxazines: the synthesis, optoelectronic, and electrochemical properties. Russ Chem Bull 72, 669–680 (2023). https://doi.org/10.1007/s11172-023-3831-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3831-4

Key words

Navigation