Skip to main content
Log in

Supramolecular structures of new tetranuclear hydroxypiperidine iodoantimonates(iii)

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Two new hybrid iodoantimonates(iii), (3-C5H12NO)4[Sb4I16] · 2 H2O (1, 3-C5H12NO+ is 3-hydroxypiperidinium) and (4-C5H12NO)4[Sb4I16] · 3 H2O (2, 4-C5H12NO+ is 4- hydroxypiperidinium), were synthesized. Their crystal structures were established. The anionic substructures of the new compounds are composed of the same tetranuclear complex anions [Sb4I16]4−. The differences in the structure of 3-hydroxypiperidine and 4-hydroxypiperidine are responsible for the differences in the supramolecular organization of the cationic substructures and in the packing of the structural units. The comparative analysis of hydrogen bonding systems in the structures of compounds 1 and 2 was carried out. The band gap width for compound 1 was estimated at 2.38 eV according to the direct band gap model and at 2.28 eV in terms of the indirect band gap model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev., 2019, 119, 3036; DOI: https://doi.org/10.1021/acs.chemrev.8b00539.

    Article  CAS  PubMed  Google Scholar 

  2. H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. I. Seok, Nature, 2021, 598, 444; DOI: https://doi.org/10.1038/s41586-021-03964-8.

    Article  CAS  PubMed  Google Scholar 

  3. S. Attique, N. Ali, S. Ali, R. Khatoon, N. Li, A. Khesro, S. Rauf, Sh. Yang, H. Wu, Adv. Scien., 2020, 7, 1903143; DOI: https://doi.org/10.1002/advs.201903143.

    Article  CAS  Google Scholar 

  4. A. M. Ganose, C. N. Savory, D. O. Scanlon, Chem. Commun., 2017, 53, 20; DOI: https://doi.org/10.1039/C6CC06475B.

    Article  CAS  Google Scholar 

  5. X. Zhao, J. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.-H. Wei, L. Zhang, J. Am. Chem. Soc., 2017, 139, 2630; DOI: https://doi.org/10.1021/jacs.6b09645.

    Article  CAS  PubMed  Google Scholar 

  6. Z. Zhu, C.-C. Chueh, N. Li, C. Mao, A. K.-Y. Jen, Adv. Mater., 2018, 30, 1703800; DOI: https://doi.org/10.1002/adma.201703800.

    Article  Google Scholar 

  7. L. Zhang, K. Wang, B. Zou, Chem. Sus. Chem., 2019, 12, 1612; DOI: https://doi.org/10.1002/cssc.201802930.

    Article  CAS  Google Scholar 

  8. K. Ahmad, S. M. Mobin, ACS Omega, 2020, 5, 28404; DOI: https://doi.org/10.1021/acsomega.0c04174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. Jing, Y. Liu, M. Li, Z. Xiaal, Adv. Optic. Mater., 2021, 9, 1; DOI: https://doi.org/10.1002/adom.202002213.

    Google Scholar 

  10. V. Morad, S. Yakunin, B. M. Benin, Y. Shynkarenko, M. J. Grotevent, I. Shorubalko, S. C. Boehme, M. V. Kovalenko, Adv. Mater., 2021, 33, 1; DOI: https://doi.org/10.1002/adma.202007355.

    Article  Google Scholar 

  11. N. Dehnhardt, M. Axt, J. Zimmermann, M. Yang, G. Mette, J. Heineof, Chem. Mater., 2020, 32, 4801; DOI: https://doi.org/10.1021/acs.chemmater.0c01605.

    Article  CAS  Google Scholar 

  12. R. Jakubas, M. Rok, K. Mencel, G. Bator, A. Piecha-Bisiorek, Inorg. Chemi. Front., 2020, 7, 2107; DOI: https://doi.org/10.1039/d0qi00265h.

    Article  CAS  Google Scholar 

  13. A. Gągor, G. Banachb, M. Weclawikc, A. Piecha-Bisiorekc, R. Jakubas, Dalton Trans., 2017, 46, 16605; DOI: https://doi.org/10.1039/c7dt03622a.

    Article  PubMed  Google Scholar 

  14. R. G. Lin, M.-S. Wang, G. Lu, P.-X. Li, G.-C. Guo, Inorg. Chem., 2013, 52, 1199; DOI: https://doi.org/10.1021/ic301181b.

    Article  CAS  PubMed  Google Scholar 

  15. L. M. Wu, X. T. Wu, L. Chen, Coord. Chem. Rev., 2009, 253, 2787; DOI: https://doi.org/10.1016/j.ccr.2009.08.003.

    Article  CAS  Google Scholar 

  16. S. A. Adonin, M. N. Sokolov, V. P. Fedin, Coord. Chem. Rev., 2016, 312, 1; DOI: https://doi.org/10.1016/j.ccr.2015.10.010.

    Article  CAS  Google Scholar 

  17. A. J. Dennington, M. T. Weller, Dalton Trans., 2018, 47, 3469; DOI: https://doi.org/10.1039/C7DT04280A.

    Article  CAS  PubMed  Google Scholar 

  18. J. K. Pious, C. Muthu, C. Vijayakumar, Acc. Chem. Res., 2022, 55, 275; DOI: https://doi.org/10.1021/acs.accounts.1c00545.

    Article  CAS  PubMed  Google Scholar 

  19. N. Mercier, N. Louvain, W. Bi, Cryst. Eng. Comm., 2009, 11, 720; DOI: https://doi.org/10.1039/b817891g.

    Article  CAS  Google Scholar 

  20. T. A. Shestimerova, N. A. Golubev, M. A. Bykov, A. V. Mironov, S. A. Fateev, A. B. Tarasov, I. Turkevych, Z. Wei, E. V. Dikarev, A. V. Shevelkov, Molecules, 2020, 25, 2712; DOI: https://doi.org/10.3390/molecules25122765.

    Article  Google Scholar 

  21. A. V. Bykov, T. A. Shestimerova, M. A. Bykov, K. A. Lyssenko, V. M. Korshunov, M. T. Metlin, I. V. Taydakov, A. V. Shevelkov, Inorganics, 2022, 10, 181; DOI: https://doi.org/10.3390/inorganics10110181.

    Article  CAS  Google Scholar 

  22. A. V. Bykov, T. A. Shestimerova, M. A. Bykov, E. V. Belova, V. E. Goncharenko, P. V. Dorovatovskii, V. N. Khrustalev, A. V. Shevelkov, Russ. Chem. Bull., 2023, 72, 167.

    Article  CAS  Google Scholar 

  23. N. A. Yelovik, A. V. Mironov, M. A. Bykov, A. N. Kuznetsov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, A. V. Shevelkov, Inorg. Chem., 2016, 55, 4132; DOI: https://doi.org/10.1021/acs.inorgchem.5b02729.

    Article  CAS  PubMed  Google Scholar 

  24. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

  26. P. Kubelka, F. Munk, Z. Tech. Phys., 1931, 12, 593.

    Google Scholar 

  27. P. Fedeli, F. Gazza, D. Calestani, P. Ferro, T. Besagni, A. Zappettini, G. Calestani, E. Marchi, P. Ceroni, R. Mosca, J. Phys. Chem. C, 2015, 119, 37, 21304; DOI: https://doi.org/10.1021/acs.jpcc.5b03923.

    Article  Google Scholar 

  28. S. Landi, Jr., I. R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C. J. Tavares, Solid State Commun., 2022, 341, 1; DOI: https://doi.org/10.1016/j.ssc.2021.114573.

    Article  Google Scholar 

  29. Y. Li, Z. Xu, X. Liu, K. Tao, S. Han, Y. Wang, Y Liu, M. Li, J. Luo, Z. Sun, Inorg. Chem., 2019, 58, 6544; DOI: https://doi.org/10.1021/acs.inorgchem.9b00718.

    Article  CAS  PubMed  Google Scholar 

  30. S. Parmar, S. Pal, A. Biswas, S. Gosavi, S. Chakraborty, M. C. Reddy, S. Ogale, Chem. Commun., 2019, 55, 7562; DOI: https://doi.org/10.1039/C9CC03485D.

    Article  CAS  Google Scholar 

  31. A. Khan, S. Han, X. Liu, K. Tao, D. Dey, J. Luo, Z. Sun, Inorg. Chem. Front., 2018, 5, 3028; DOI: https://doi.org/10.1039/C8QI00902C.

    Article  CAS  Google Scholar 

  32. M. Wojtas, A. Bil, A. Gagor, W. Medyckic, A. L. Kholkin, Cryst. Eng. Comm., 2016, 18, 2413; DOI: https://doi.org/10.1039/c6ce00160b.

    Article  CAS  Google Scholar 

  33. S. Chatterjee, J. A. Krause, Wi. B. Connick, C. Genre, Al. Rodrigue-Witchel, C. Reber, Inorg. Chem., 2010, 49, 2808; DOI: https://doi.org/10.1021/ic9021917.

    Article  CAS  PubMed  Google Scholar 

  34. P. Bajaj, D. Zhuang, F. Paesani, J. Phys. Chem. Lett., 2019, 10, 2823; DOI: https://doi.org/10.1021/acs.jpclett.9b00899.

    Article  CAS  PubMed  Google Scholar 

  35. W. Gamrad, A. Dreier, R. Goddard, K.-R. Pörschke, Angew. Chem., Int. Ed., 2015, 54, 4482; DOI: https://doi.org/10.1002/anie.201408278.

    Article  CAS  Google Scholar 

  36. S. Alvarez, Dalton Trans., 2013, 42, 8617; DOI: https://doi.org/10.1039/c3dt50599e.

    Article  CAS  PubMed  Google Scholar 

  37. T. A. Shestimerova, N. A. Golubev, N. A. Yelavik, M. A. Bykov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, A. V. Shevelkov, Cryst. Growth Des., 2018, 18, 2572; DOI: https://doi.org/10.1021/acs.cgd.8b00179.

    Article  CAS  Google Scholar 

  38. A. J. Dennington, M. T. Weller, Dalton Trans., 2016, 45, 17974; DOI: https://doi.org/10.1039/c6dt03602c.

    Article  CAS  PubMed  Google Scholar 

  39. E. I. Marchenko, V. V. Korolev, S. A. Fateev, A. Mitrofanov, N. N. Eremin, E. A. Goodilin, A. B. Tarasov, Chem. Mater., 2021, 33, 7518; DOI: https://doi.org/10.1021/acs.chemmater.1c02467.

    Article  CAS  Google Scholar 

  40. T. A. Shestimerova, N. A. Golubev, A. V. Grigorieva, M. A. Bykov, Z. Wei, E. V. Dikarev, A. V. Shevelkov, Russ. Chem. Bull., 2021, 70, 39; DOI: https://doi.org/10.1007/s11172-021-3054-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shevelkov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-03-00280). We are grateful to A. V. Grigorieva for help in performing spectroscopic studies. The X-ray diffraction studies were carried out using the equipment granted by the Lomonosov Moscow State University Program of Development.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 3, pp. 641–650, March, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, A.A., Bykov, A.V., Shestimerova, T.A. et al. Supramolecular structures of new tetranuclear hydroxypiperidine iodoantimonates(iii). Russ Chem Bull 72, 641–650 (2023). https://doi.org/10.1007/s11172-023-3828-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3828-1

Key words

Navigation