Skip to main content
Log in

Preparation of heterogeneous catalysts by the post-synthetic modification of mesoporous metal-organic framework MIL-101

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of MIL-101-L compounds (L = 4,4′-bipyridyl, pyrazine, piperazine, 1,4-diaza[2.2.2]bicyclooctane, and ethylenediamine) was synthesized using the post-synthetic coordination modification of mesoporous chromium(iii) terephthalate MIL-101. These compounds contain basic sites and are capable of exhibiting catalytic activity in the Henry nitroaldol condensation reaction with high selectivity. Compounds MIL-101-Sal-M (M = Ni, Cr, Zr, Co) containing the salen complexes grafted onto the framework surface were prepared using the covalent post-synthetic modification methods. These compounds exhibit catalytic activity in the addition of carbon dioxide to propylene oxide in quantitative yield in the presence of a cocatalyst. The results obtained confirm that the post-synthetic modification of porous metal-organic frameworks is an efficient approach for preparing heterogeneous catalysts based on the known homogeneous catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Wu, P.-F. Zhang, G.-P. Yang, L. Hou, W.-Y. Zhang, Y.-F. Han, P. Liu, Y.-Y. Wang, Coord. Chem. Rev., 2021, 434, 213709; DOI: https://doi.org/10.1016/j.ccr.2020.213709.

    Article  CAS  Google Scholar 

  2. W. Fan, X. Zhang, Z. Kang, X. Liu, D. Sun, Coord. Chem. Rev., 2021, 443, 213968; DOI: https://doi.org/10.1016/j.ccr.2021.213968.

    Article  CAS  Google Scholar 

  3. T. Ghanbari, F. Abnisa, W. M. A. Wan Daud, Science of The Total Environment, 2020, 707, 135090; DOI: https://doi.org/10.1016/j.scitotenv.2019.135090.

    Article  CAS  PubMed  Google Scholar 

  4. A. A. Lysova, K. A. Kovalenko, A. S. Nizovtsev, D. N. Dybtsev, V. P. Fedin, Chem. Eng. J., 2023, 453, 139642; DOI: https://doi.org/10.1016/j.cej.2022.139642.

    Article  CAS  Google Scholar 

  5. K. A. Kovalenko, A. S. Potapov, V. P. Fedin, Russ. Chem. Rev., 2022, 91, RCR5026; DOI: https://doi.org/10.1070/RCR5026.

    Article  Google Scholar 

  6. F. B. Jahromi, A. Elhambakhsh, P. Keshavarz, F. Panahi, Fuel, 2023, 334, 126603; DOI: https://doi.org/10.1016/j.fuel.2022.126603.

    Article  CAS  Google Scholar 

  7. M. A. Agafonov, E. V. Alexandrov, N. A. Artyukhova, G. E. Bekmukhamedov, V. A. Blatov, V. V. Butova, Y. M. Gayfulin, A. A. Garibyan, Z. N. Gafurov, Yu. G. Gorbunova, L. G. Gordeeva, M. S. Gruzdev, A. N. Gusev, G. L. Denisov, D. N. Dybtsev, Yu. Yu. Enakieva, A. A. Kagilev, A. O. Kantyukov, M. A. Kiskin, K. A. Kovalenko, A. M. Kolker, D. I. Kolokolov, Y. M. Litvinova, A. A. Lysova, N. V. Maksimchuk, Y. V. Mironov, Yu. V. Nelyubina, V. V. Novikov, V. I. Ovcharenko, A. V. Piskunov, D. M. Polyukhov, V. A. Polyakov, V. G. Ponomareva, A. S. Poryvaev, G. V. Romanenko, A. V. Soldatov, M. V. Solovyeva, A. G. Stepanov, I. V. Terekhova, O. Yu. Trofimova, V. P. Fedin, M. V. Fedin, O. A. Kholdeeva, A. Yu. Tsivadze, U. V. Chervonova, A. I. Cherevko, V. F. Shul’gin, E. S. Shutova, D. G. Yakhvarov, J. Struct. Chem., 2022, 63, 671–843; DOI: https://doi.org/10.1134/S0022476622050018.

    Article  CAS  Google Scholar 

  8. D. N. Dybtsev and K. P. Bryliakov, Coord. Chem. Rev., 2021, 437, 213845; DOI: https://doi.org/10.1016/j.ccr.2021.213845.

    Article  CAS  Google Scholar 

  9. A. V. Artem’ev, V. P. Fedin, Russ. J. Org. Chem., 2019, 55, 800–817; DOI: https://doi.org/10.1134/S1070428019060101.

    Article  Google Scholar 

  10. Y.-B. Huang, J. Liang, X.-S. Wang, R. Cao, Chem. Soc. Rev., 2017, 46, 126–157; DOI: https://doi.org/10.1039/C6CS00250A.

    Article  CAS  PubMed  Google Scholar 

  11. M. I. Nandasiri, S. R. Jambovane, B. P. McGrail, H. T. Schaef, Satish K. Nune, Coord. Chem. Rev., 2016, 311, 38–52; DOI: https://doi.org/10.1016/j.ccr.2015.12.004.

    Article  CAS  Google Scholar 

  12. S. M. Cohen, Chem. Rev., 2012, 112, 970–1000; DOI: https://doi.org/10.1021/cr200179u.

    Article  CAS  PubMed  Google Scholar 

  13. P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp, O. K. Farha, Chem. Soc. Rev., 2014, 43, 5896–5912; DOI: https://doi.org/10.1039/C4CS00067F.

    Article  CAS  PubMed  Google Scholar 

  14. K. A. Kovalenko, V. P. Fedin, Russ. Chem. Bull., 2016, 65, 1406–1417; DOI: https://doi.org/10.1007/s11172-016-1469-x.

    Article  CAS  Google Scholar 

  15. R. E. Morris, L. Brammer, Chem. Soc. Rev., 2017, 46, 5444–5462; DOI: https://doi.org/10.1039/C7CS00187H.

    Article  CAS  PubMed  Google Scholar 

  16. V. V. Veselovsky, A. V. Lozanova, V. I. Isaeva, V. V. Chernyshev, Russ. Chem. Bull., 2021, 70, 874–879; DOI: https://doi.org/10.1007/s11172-021-3161-z.

    Article  CAS  Google Scholar 

  17. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science, 2005, 309, 2040–2042; DOI: https://doi.org/10.1126/science.1116275.

    Article  PubMed  Google Scholar 

  18. S. Bhattacharjee, C. Chen, W.-S. Ahn, RSC Adv., 2014, 4, 52500–52525; DOI: https://doi.org/10.1039/C4RA11259H.

    Article  CAS  Google Scholar 

  19. M. Zou, M. Dong, T. Zhao, Inter. J. Molecul. Sci., 2022, 23, 9396; DOI: https://doi.org/10.3390/ijms23169396.

    Article  CAS  Google Scholar 

  20. J. M. Park, G.-Y. Cha, D. Jo, K. H. Cho, J. W. Yoon, Y. K. Hwang, S.-K. Lee, U.-H. Lee, Chem. Eng. J., 2022, 444, 136476; DOI: https://doi.org/10.1016/j.cej.2022.136476.

    Article  CAS  Google Scholar 

  21. X. Li, Z. Zhou, Y. Zhao, D. Ramella, Y. Luan, Appl. Organometal Chem., DOI: https://doi.org/10.1002/aoc.5445.

  22. N. Maksimchuk, M. Timofeeva, M. Melgunov, A. Shmakov, Y. Chesalov, D. Dybtsev, V. Fedin, O. Kholdeeva, J. Catalysis, 2008, 257, 315–323; DOI: https://doi.org/10.1016/j.jcat.2008.05.014.

    Article  CAS  Google Scholar 

  23. N. V. Maksimchuk, K. A. Kovalenko, S. S. Arzumanov, Y. A. Chesalov, M. S. Melgunov, A. G. Stepanov, V. P. Fedin, O. A. Kholdeeva, Inorg. Chem., 2010, 49, 2920–2930; DOI: https://doi.org/10.1021/ic902459f.

    Article  CAS  PubMed  Google Scholar 

  24. M. Wu, M. Huang, B. Zhang, Y. Li, S. Liu, H. Wang, M. Fan, B. Li, L. Dong, G. Chen, Separation and Purification Technology, 2023, 307, 122744; DOI: https://doi.org/10.1016/j.seppur.2022.122744.

    Article  CAS  Google Scholar 

  25. K. A. Kovalenko, A. M. Cheplakova, P. V. Burlak, V. P. Fedin, Russ. J. Inorg. Chem., 2015, 60, 790–794; DOI: https://doi.org/10.1134/S0036023615070086.

    Article  CAS  Google Scholar 

  26. Z. Sun, G. Li, H. Liu, L. Liu, Appl. Catalysis A: General, 2013, 466, 98–104; DOI: https://doi.org/10.1016/j.apcata.2013.06.032.

    Article  CAS  Google Scholar 

  27. H. M. A. Hassan, M. A. Betiha, S. K. Mohamed, E. A. El-Sharkawy, E. A. Ahmed, Appl. Surface Sci., 2017, 412, 394–404; DOI: https://doi.org/10.1016/j.apsusc.2017.03.247.

    Article  CAS  Google Scholar 

  28. P. Tang, X.-X. Xie, Z.-Y. Huang, X.-T. Cai, W.-G. Zhang, S.-L. Cai, J. Fan, S.-R. Zheng, J. Solid State Chemistry, 2022, 315, 123453; DOI: https://doi.org/10.1016/j.jssc.2022.123453.

    Article  CAS  Google Scholar 

  29. V. G. Ponomareva, K. A. Kovalenko, A. P. Chupakhin, D. N. Dybtsev, E. S. Shutova, V. P. Fedin, J. Am. Chem. Soc., 2012, 134, 15640–15643; DOI: https://doi.org/10.1021/ja305587n.

    Article  CAS  PubMed  Google Scholar 

  30. A. M. Cheplakova, K. A. Kovalenko, M. A. Shestopalov, K. A. Brylev, V. P. Fedin, Russ. Chem. Bull., 2014, 63, 1487–1492; DOI: https://doi.org/10.1007/s11172-014-0624-5.

    Article  CAS  Google Scholar 

  31. E. A. Berdonosova, K. A. Kovalenko, E. V. Polyakova, S. N. Klyamkin, V. P. Fedin, J. Phys. Chem. C, 2015, 119, 13098–13104; DOI: https://doi.org/10.1021/acs.jpcc.5b02861.

    Article  CAS  Google Scholar 

  32. A. M. Cheplakova, A. O. Solovieva, T. N. Pozmogova, Y. A. Vorotnikov, K. A. Brylev, N. A. Vorotnikova, E. V. Vorontsova, Y. V. Mironov, A. F. Poveshchenko, K. A. Kovalenko, M. A. Shestopalov, J. Inorg. Biochem., 2017, 166, 100–107; DOI: https://doi.org/10.1016/j.jinorgbio.2016.11.014.

    Article  CAS  PubMed  Google Scholar 

  33. X. Li, Y. Mao, K. Leng, G. Ye, Y. Sun, W. Xu, Materials Letters, 2017, 197, 192–195; DOI: https://doi.org/10.1016/j.matlet.2017.03.034.

    Article  CAS  Google Scholar 

  34. D. Jiang, L. L. Keenan, A. D. Burrows, K. J. Edler, Chem. Commun., 2012, 48, 12053; DOI: https://doi.org/10.1039/c2cc36344e.

    Article  CAS  Google Scholar 

  35. M. Lammert, S. Bernt, F. Vermoortele, D. E. De Vos, N. Stock, Inorg. Chem., 2013, 52, 8521–8528; DOI: https://doi.org/10.1021/ic4005328.

    Article  CAS  PubMed  Google Scholar 

  36. S. Walia, M. Kaur, S. K. Kansal, Materials Chemistry and Physics, 2022, 289, 126493; DOI: https://doi.org/10.1016/j.matchemphys.2022.126493.

    Article  CAS  Google Scholar 

  37. Y.-X. Li, W. Zhong, J.-J. Zhou, S.-C. Qi, X.-Q. Liu, L.-B. Sun, Angewandte Chemie International Edition, 2022, 61, e202212732; DOI: https://doi.org/10.1002/anie.202212732.

    CAS  PubMed  Google Scholar 

  38. X. Li, J. Wang, X. Liu, L. Liu, D. Cha, X. Zheng, A. A. Yousef, K. Song, Y. Zhu, D. Zhang, Y. Han, J. Am. Chem. Soc., 2019, 141, 12021–12028; DOI: https://doi.org/10.1021/jacs.9b04896.

    Article  CAS  PubMed  Google Scholar 

  39. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem., 2015, 87, 1051–1069; DOI: https://doi.org/10.1515/pac-2014-1117.

    Article  CAS  Google Scholar 

  40. S. Bernt, V. Guillerm, C. Serre, N. Stock, Chem. Commun., 2011, 47, 2838; DOI: https://doi.org/10.1039/c0cc04526h.

    Article  CAS  Google Scholar 

  41. P. E. Aranha, M. P. dos Santos, S. Romera, E. R. Dockal, Polyhedron, 2007, 26, 1373–1382; DOI: https://doi.org/10.1016/j.poly.2006.11.005.

    Article  CAS  Google Scholar 

  42. M. A. Besedina, E. A. Smirnova, D. O. Poturai, M. P. Karushev, Russ. Chem. Bull., 2021, 70, 107–112; DOI: https://doi.org/10.1007/s11172-021-3063-0.

    Article  CAS  Google Scholar 

  43. E. S. Mozhaitsev, K. Y. Ponomarev, O. S. Patrusheva, A. V. Medvedko, A. I. Dalinger, A. D. Rogachev, N. I. Komarova, D. V. Korchagina, E. V. Suslov, K. P. Volcho, N. F. Salakhutdinov, S. Z. Vatsadze, Russ. J. Org. Chem., 2020, 56, 1969–1981; DOI: https://doi.org/10.1134/S1070428020110123.

    Article  CAS  Google Scholar 

  44. H. Szalad, N. Candu, B. Cojocaru, T. D. Păsătoiu, M. Andruh, V. I. Pârvulescu, Chemistry, 2020, 2, 50–62; DOI: https://doi.org/10.3390/chemistry2010006.

    Article  CAS  Google Scholar 

  45. S. A. Sapchenko, D. N. Dybtsev, V. P. Fedin, Pure and Applied Chemistry, 2017, 89, 1049–1064; DOI: https://doi.org/10.1515/pac-2016-1206.

    Article  CAS  Google Scholar 

  46. S. A. Sapchenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2014, 63, 2363–2368; DOI: https://doi.org/10.1007/s11172-014-0748-7].

    Article  CAS  Google Scholar 

  47. S. Aryanejad, G. Bagherzade, M. Moudi, Appl. Organometallic Chemistry, 2019, 33, e4820; DOI: https://doi.org/10.1002/aoc.4820.

    Article  Google Scholar 

  48. C. Zhu, H. Tang, K. Yang, X. Wu, Y. Luo, J. Wang, Y. Li, Catalysis Communications, 2020, 135, 105837; DOI: https://doi.org/10.1016/j.catcom.2019.105837.

    Article  CAS  Google Scholar 

  49. G. N. Bondarenko, O. G. Ganina, A. A. Lysova, V. P. Fedin, I. P. Beletskaya, J. CO2Utilization, 2021, 53, 101718; DOI: https://doi.org/10.1016/j.jcou.2021.101718.

    Article  CAS  Google Scholar 

  50. S. G. Musa, Z. M. Aljunid Merican, O. Akbarzadeh, Polymers, 2021, 13, 3905; DOI: https://doi.org/10.3390/polym13223905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. Tombesi, C. Pettinari, Inorganics, 2021, 9, 81; DOI: https://doi.org/10.3390/inorganics9110081.

    Article  CAS  Google Scholar 

  52. A. Valverde-González, M. C. Borrallo-Aniceto, U. Díaz, E. M. Maya, F. Gándara, F. Sánchez, M. Iglesias, J. CO2Utilization, 2023, 67, 102298; DOI: https://doi.org/10.1016/j.jcou.2022.102298.

    Article  Google Scholar 

  53. V. I. Isaeva, M. N. Timofeeva, I. A. Lukoyanov, E. Yu. Gerasimov, V. N. Panchenko, V. V. Chernyshev, L. M. Glukhov, L. M. Kustov, J. CO2 Utilization, 2022, 66, 102262; DOI: https://doi.org/10.1016/j.jcou.2022.102262.

    Article  CAS  Google Scholar 

  54. W. Dai, P. Mao, Y. Liu, S. Zhang, B. Li, L. Yang, X. Luo, J. Zou, J. CO2Utilization, 2020, 36, 295–305; DOI: https://doi.org/10.1016/j.jcou.2019.10.021.

    Article  CAS  Google Scholar 

  55. D. Liu, G. Li, H. Liu, Appl. Surface Sci., 2018, 428, 218–225; DOI: https://doi.org/10.1016/j.apsusc.2017.09.040.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. A. Kovalenko or V. P. Fedin.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 121031700321-3).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 3, pp. 624–634, March, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlak, P.V., Kovalenko, K.A. & Fedin, V.P. Preparation of heterogeneous catalysts by the post-synthetic modification of mesoporous metal-organic framework MIL-101. Russ Chem Bull 72, 624–634 (2023). https://doi.org/10.1007/s11172-023-3826-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3826-8

Key words

Navigation