Skip to main content

Advertisement

Log in

Energy profiles of the catalytic cycle of enzymatic reactions and factors determining enzymatic catalysis efficiency

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Free energy profiles along the reaction coordinate were analyzed for several model systems by modeling elementary processes of the catalytic cycle of enzymes. A substantial contribution of fast non-limiting steps, which are conformational changes/adjustments, and proton transfer steps to the implementation of the catalytic cycle and high rates of enzymatic reactions is shown. The rate constants of conformational changes and proton transfer steps were determined from an analysis of the free energy profiles. In most cases, the lifetimes of the conformers lie in a range of 10−10 s. A distinctive feature of enzymatic catalysis is the multistep character of the reactions, while the catalytic cycle is accomplished in the conformationally flexible polymer matrix with the conformational adjustment of the active site of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. P. Jencks, Catalysis in Chemistry and Enzymology, Dover Publications, New York, 1969.

    Google Scholar 

  2. S. D. Varfolomeev, Entsiklopediya sovremennogo estestvoznaniya. Sovremennye tekhnologii [Encyclopedia of Modern Natural Science. Modern Technologies], Vol. 10, Magister-Press, Moscow, 2001, p. 237 (in Russian).

    Google Scholar 

  3. L. A. Blyumenfel’d, Reshaemye i nereshaemye problemy biologicheskoi fiziki [Solvable and Insolvable Problems of Biological Physics], Editorial URSS, Moscow, 2002, 158 pp. (in Russian).

    Google Scholar 

  4. S. D. Varfolomeev, Khimicheskaya enzimologiya [Chemical Enzymology], Nauchnyi Mir, Moscow, 2019, 543 pp. (in Russian).

    Google Scholar 

  5. Vl. V. Voevodin, A. Antonov, D. Nikitenko, P. Schvetz, S. Sobolev, I. Sidorov, K. Stefanov, V. V. Voevodin, S. Zhumatiy, Supercomp. Front. Innov., 2019, 6, 4; DOI: https://doi.org/10.14529/jsfi190201.

    Google Scholar 

  6. A. Warshel, M. Levitt, J. Mol. Biol., 1976, 103, 227; DOI: https://doi.org/10.1016/0022-2836(76)90311-9.

    Article  CAS  PubMed  Google Scholar 

  7. H. M. Senn, W. Thiel, Angew. Chem., Int. Ed., 2009, 48, 1198; DOI: https://doi.org/10.1002/anie.200802019.

    Article  CAS  Google Scholar 

  8. S. D. Varfolomeev, S. V. Lushchekina, A. V. Nemukhin, A. M. Kulakova, E. D. Kots, G. F. Makhaeva, E. Delacour, O. Lockridge, P. Masson, Russ. Chem. Bull., 2016, 65, 1592; DOI: https://doi.org/10.1007/s11172-016-1487-8.

    Article  CAS  Google Scholar 

  9. H. Eyring, S. H. Lin, S. M. Lin, Basic Chemical Kinetics, Wiley, 1980.

  10. S. D. Varfolomeev, K. G. Gurevich, Biokinetika. Prakticheskii kurs [Biokinetics. The Practical Course], Fair-Press, Moscow, 1999, 720 pp. (in Russian).

    Google Scholar 

  11. T. Vasilevskaya, M. G. Khrenova, A. V. Nemukhin, W. Thiel, J. Comput. Chem., 2016, 37, 1801; DOI: https://doi.org/10.1002/jcc.24395.

    Article  CAS  PubMed  Google Scholar 

  12. E. Kots, M. Khrenova, S. Lushchekina, S. Varfolomeev, B. Grigorenko, A. Nemukhin, J. Phys. Chem. B, 2016, 120, 4221; DOI: https://doi.org/10.1021/acs.jpcb.6b02542.

    Article  CAS  PubMed  Google Scholar 

  13. S. D. Varfolomeev, E. D. Kots, M. G. Khrenova, S. V. Lushchekina, A. V. Nemukhin, Dokl. Phys. Chem., 2017, 474, Part 2, 89; DOI: https://doi.org/10.1134/S0012501617060045.

    Article  CAS  Google Scholar 

  14. B. L. Grigorenko, A. I. Krylov, A. V. Nemukhin, J. Am. Chem. Soc., 2017, 139, 10239; DOI: https://doi.org/10.1021/jacs.7b00676.

    Article  CAS  PubMed  Google Scholar 

  15. M. G. Khrenova, A. V. Nemukhin, J. Phys. Chem. B, 2018, 122, 1378; DOI: https://doi.org/10.1021/acs.jpcb.7b10188.

    Article  CAS  PubMed  Google Scholar 

  16. B. L. Grigorenko, I. V. Polyakov, A. V. Nemukhin, J. Phys. Chem. B, 2020, 124, 451; DOI: https://doi.org/10.1021/acs.jpcb.9b07349.

    Article  CAS  PubMed  Google Scholar 

  17. M. G. Khrenova, B. L. Grigorenko, A. V. Nemukhin, ACS Catal., 2021, 11, 8985; DOI: https://doi.org/10.1021/acscatal.1c00582.

    Article  CAS  Google Scholar 

  18. B. L. Grigorenko, I. V. Polyakov, A. I. Krylov, A. V. Nemukhin, J. Phys. Chem. B, 2019, 123, 8901; DOI: https://doi.org/10.1021/acs.jpcb.9b06988.

    Article  CAS  PubMed  Google Scholar 

  19. I. V. Polyakov, M. G. Khrenova, B. L. Grigorenko, A. V. Nemukhin, Mendeleev Commun., 2022, 32, 739; DOI: https://doi.org/10.1016/j.mencom.2022.11.010.

    Article  Google Scholar 

  20. A. V. Krivitskaya, M. G. Khrenova, A. V. Nemukhin, Molecules, 2021, 20, 6280; DOI: https://doi.org/10.3390/molecules26206280.

    Article  Google Scholar 

  21. I. P. Polyakov, A. E. Kniga, B. L. Grigorenko, A. V. Nemukhin, ACS Chem. Neurosci., 2020, 11, 2296; DOI: https://doi.org/10.1021/acschemneuro.0c00250.

    Article  CAS  PubMed  Google Scholar 

  22. S. D. Varfolomeev, N. A. Semenova, V. I. Bykov, S. B. Tsybenova, Dokl. Phys. Chem., 2019, 484, 23; DOI: https://doi.org/10.1134/S0012501619020039.

    Article  CAS  Google Scholar 

  23. S. D. Varfolomeev, N. A. Semenova, V. I. Bykov, S. B. Tsybenova, Dokl. Phys. Chem., 2019, 488, 125; DOI: https://doi.org/10.1134/s0012501619090057.

    Article  CAS  Google Scholar 

  24. S. D. Varfolomeev, N. A. Semenova, M. V. Ublinsky, V. I. Bykov, S. B. Tsybenova, Chem. Phys. Lett., 2019, 729, 84; DOI: https://doi.org/10.1016/j.cplett.2022.139485.

    Article  CAS  Google Scholar 

  25. S. D. Varfolomeev, V. I. Bykov, N. A. Semenova, S. B. Tsybenova, ACS Chem. Neurosci., 2021, 12, 2202; DOI: https://doi.org/10.1021/acschemneuro.1c00214.

    Article  CAS  PubMed  Google Scholar 

  26. J. H. Neale, R. T. Olszewski, D. Zuo, K. J. Janczura, C. P. Profaci, K. M. Lavin, J. C. Madore, T. Bzdega, J. Neurochem., 2011, 118, 490; DOI: https://doi.org/10.1111/j.1471-4159.2011.07338.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. F. T. Arnsten, M. Wang, Am. J. Psychiatry, 2020, 177, 1103; DOI: https://doi.org/10.1176/appi.ajp.2020.20101458.

    Article  PubMed  Google Scholar 

  28. M. Khrenova, E. Kots, S. Varfolomeev, S. Lushchekina, A. Nemukhin, J. Phys. Chem. B, 2017, 121, 9389; DOI: https://doi.org/10.1021/acs.jpcb.7b08759.

    Article  CAS  PubMed  Google Scholar 

  29. E. D. Kots, M. G. Khrenova, A. V. Nemukhin, S. D. Varfolomeev, Russ. Chem. Rev., 2019, 88, 1; DOI: https://doi.org/10.1070/RCR4842.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nemukhin.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

Modeling of the chemical reaction mechanisms was performed using equipment of the Center for Collective Use of Supercomputational Resources of the Moscow State University.

This work was financially supported by the Russian Science Foundation (Project No. 22-13-00012, M. G. Khrenova and B. L. Grigorenko).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 3, pp. 617–623, March, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomeev, S.D., Nemukhin, A.V., Khrenova, M.G. et al. Energy profiles of the catalytic cycle of enzymatic reactions and factors determining enzymatic catalysis efficiency. Russ Chem Bull 72, 617–623 (2023). https://doi.org/10.1007/s11172-023-3825-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3825-7

Key words

Navigation