Skip to main content
Log in

Prolonged cytostatic effect of nanosized NH2-UiO-66 doped with doxorubicin

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Nanosized (d ∼70 nm) particles of metal-organic framework (MOF) based on zirconium and 2-aminoterephthalic acid, NH2-UiO-66, were prepared by a simple one-pot method. Due to the small particle size, the presence of amino groups, low toxicity, and high sorption capacity caused by large pore size, the obtained MOF is a perfect platform for the preparation of combined cytostatic agents with prolonged action. Nano-MOF is highly stable in distilled water, which allows for the sorption of a cytostatic drug without crystal destruction. The MOF gradually loses crystallinity in phosphate-buffered saline (pH 7.4), resulting in a gradual release of the drug under near-physiological conditions. Sorption studies have shown that approximately 50% of the drug is adsorbed after 48 h of storage of NH2-UiO-66 in a doxorubicin solution. To demonstrate the prolonged cytostatic effect, cytotoxicity was studied for different incubation times (8, 24, and 48 h) against two cell cultures, MRC-5 (fibroblasts, healthy cells) and Hep-2 (human laryngeal cancer cells). Doxorubicin-doped nano-MOF shows the highest toxicity, which increases with increasing incubation time, thus confirming prolonged cytostatic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. H. Yap, K. L. Fow, G. Z. Chen, Green Energy Environ., 2017, 2, 218; DOI: https://doi.org/10.1016/j.gee.2017.05.003.

    Article  Google Scholar 

  2. M. A. Agafonov, E. V. Alexandrov, N. A. Artyukhova, G. E. Bekmukhamedov, V. A. Blatov, V. V. Butova, Y. M. Gayfulin, A. A. Garibyan, Z. N. Gafurov, Y. G. Gorbunova, L. G. Gordeeva, M. S. Gruzdev, A. N. Gusev, G. L. Denisov, D. N. Dybtsev, Y. Y. Enakieva, A. A. Kagilev, A. O. Kantyukov, M. A. Kiskin, K. A. Kovalenko, A. M. Kolker, D. I. Kolokolov, Y. M. Litvinova, A. A. Lysova, N. V. Maksimchuk, Y. V. Mironov, Y. V. Nelyubina, V. V. Novikov, V. I. Ovcharenko, A. V. Piskunov, D. M. Polyukhov, V. A. Polyakov, V. G. Ponomareva, A. S. Poryvaev, G. V. Romanenko, A. V. Soldatov, M. V. Solovyeva, A. G. Stepanov, I. V. Terekhova, O. Y. Trofimova, V. P. Fedin, M. V. Fedin, O. A. Kholdeeva, A. Y. Tsivadze, U. V. Chervonova, A. I. Cherevko, V. F. Shul’gin, E. S. Shutova, D. G. Yakhvarov, J. Struct. Chem., 2022, 63, 671; DOI: https://doi.org/10.1134/S0022476622050018.

    Article  CAS  Google Scholar 

  3. A. V. Marakulin, A. A. Lysova, D. G. Samsonenko, P. V. Dorovatovskii, V. A. Lazarenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2020, 69, 360; DOI: https://doi.org/10.1007/s11172-020-2768-9.

    Article  CAS  Google Scholar 

  4. S. A. Sapchenko, M. O. Barsukova, T. V. Nokhrina, K. A. Kovalenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2020, 69, 461; DOI: https://doi.org/10.1007/s11172-020-2785-8.

    Article  CAS  Google Scholar 

  5. A. A. Lysova, R. D. Marchenko, D. G. Samsonenko, A. S. Potapov, V. P. Fedin, Russ. Chem. Bull., 2020, 69, 1122; DOI: https://doi.org/10.1007/s11172-020-2877-5.

    Article  CAS  Google Scholar 

  6. V. Pascanu, G. G. Miera, A. K. Inge, B. Martin-Matute, J. Am. Chem. Soc., 2019, 141, 7223; DOI: https://doi.org/10.1021/jacs.9b00733.

    Article  CAS  PubMed  Google Scholar 

  7. K. K. Gangu, S. B. Jonnalagadda, Front. Chem., 2021, 9, ARTN 747615; DOI: https://doi.org/10.3389/fchem.2021.747615.

  8. D. N. Dybtsev, K. P. Bryliakov, Coord. Chem. Rev., 2021, 437, ARTN 213845; DOI: https://doi.org/10.1016/j.ccr.2021.213845.

  9. Q. Wang, D. Astruc, Chem. Rev., 2020, 120, 1438; DOI: https://doi.org/10.1021/acs.chemrev.9b00223.

    Article  CAS  PubMed  Google Scholar 

  10. Q. Wang, Q. Y. Gao, A. M. Al-Enizi, A. Nafady, S. Q. Ma, Inorg. Chem. Front., 2020, 7, 300; DOI: https://doi.org/10.1039/c9qi01120j.

    Article  CAS  Google Scholar 

  11. W. R. Zheng, L. Y. S. Lee, ACS Energy Lett., 2021, 6, 2838; DOI: https://doi.org/10.1021/acsenergylett.1c01350.

    Article  CAS  Google Scholar 

  12. H. F. Wang, L. Y. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev., 2020, 49, 1414; DOI: https://doi.org/10.1039/c9cs00906j.

    Article  CAS  PubMed  Google Scholar 

  13. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev., 2012, 112, 1105; DOI: https://doi.org/10.1021/cr200324t.

    Article  CAS  PubMed  Google Scholar 

  14. H. Y. Li, S. N. Zhao, S. Q. Zang, J. Li, Chem. Soc. Rev., 2020, 49, 6364; DOI: https://doi.org/10.1039/c9cs00778d.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Liu, T. Jiang, Z. Liu, Nanotheranostics, 2022, 6, 143; DOI: https://doi.org/10.7150/ntno.63458.

    Article  PubMed  PubMed Central  Google Scholar 

  16. H. S. Wang, Y. H. Wang, Y. Ding, Nanoscale Adv., 2020, 2, 3788; DOI: https://doi.org/10.1039/d0na00557f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. V. Russo, M. Hmoudah, F. Broccoli, M. R. Iesce, O.-S. Jung, M. Di Serio, Front. Chem. Eng., 2020, 2, ARTN 581487; DOI: https://doi.org/10.3389/fceng.2020.581487.

  18. M. Mon, R. Bruno, J. Ferrando-Soria, D. Armentano, E. Pardo, J. Mater. Chem. A, 2018, 6, 4912; DOI: https://doi.org/10.1039/c8ta00264a.

    Article  CAS  Google Scholar 

  19. H. Li, K. C. Wang, Y. J. Sun, C. T. Lollar, J. L. Li, H. C. Zhou, Mater. Today, 2018, 21, 108; DOI: https://doi.org/10.1016/j.mattod.2017.07.006.

    Article  CAS  Google Scholar 

  20. A. Nalaparaju, J. W. Jiang, Adv. Sci., 2021, 8, ARTN 2003143; DOI: https://doi.org/10.1002/advs.202003143.

  21. L. R. Mingabudinova, V. V. Vinogradov, V. A. Milichko, E. Hey-Hawkins, A. V. Vinogradov, Chem. Soc. Rev., 2016, 45, 5408; DOI: https://doi.org/10.1039/c6cs00395h.

    Article  CAS  PubMed  Google Scholar 

  22. C. C. Chueh, C. I. Chen, Y. A. Su, H. Konnerth, Y. J. Gu, C. W. Kung, K. C. W. Wu, J. Mater. Chem. A, 2019, 7, 17079; DOI: https://doi.org/10.1039/c9ta03595h.

    Article  CAS  Google Scholar 

  23. Y. Tang, H. L. Wu, W. Q. Cao, Y. J. Cui, G. D. Qian, Adv. Opt. Mater., 2021, 9, ARTN 2001817; DOI: https://doi.org/10.1002/adom.202001817.

  24. X. C. Cai, Z. X. Xie, D. D. Li, M. Kassymova, S. Q. Zang, H. L. Jiang, Coord. Chem. Rev., 2020, 417, ARTN 213366; DOI: https://doi.org/10.1016/j.ccr.2020.213366.

  25. S. Y. He, L. Wu, X. Li, H. Y. Sun, T. Xiong, J. Liu, C. X. Huang, H. P. Xu, H. M. Sun, W. D. Chen, R. Gref, J. W. Zhang, Acta Pharm. Sin. B, 2021, 11, 2362; DOI: https://doi.org/10.1016/j.apsb.2021.03.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Y. J. Sun, L. W. Zheng, Y. Yang, X. Qian, T. Fu, X. W. Li, Z. Y. Yang, H. Yan, C. Cui, W. H. Tan, Nano-Micro Lett., 2020, 12, ARTN 103; DOI: https://doi.org/10.1007/s40820-020-00423-3.

  27. M. R. Saeb, N. Rabiee, M. Mozafari, E. Mostafavi, Materials, 2021, 14, ARTN 3652; DOI: https://doi.org/10.3390/ma14133652.

  28. M. Kalaj, S. M. Cohen, ACS Central Sci., 2020, 6, 1046; DOI: https://doi.org/10.1021/acscentsci.0c00690.

    Article  CAS  Google Scholar 

  29. S. Mandal, S. Natarajan, P. Mani, A. Pankajakshan, Adv. Funct. Mater., 2021, 31, ARTN 2006291; DOI: https://doi.org/10.1002/adfm.202006291.

  30. D. Buzek, S. Adamec, K. Lang, J. Demel, Inorg. Chem. Front., 2021, 8, 720; DOI: https://doi.org/10.1039/d0qi00973c.

    Article  CAS  Google Scholar 

  31. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850; DOI: https://doi.org/10.1021/ja8057953.

    Article  PubMed  Google Scholar 

  32. M. Aghajanzadeh, M. Zamani, H. Molavi, H. K. Manjili, H. Danafar, A. Shojaei, J. Inorg. Organomet. Polym. Mater., 2018, 28, 177; DOI: https://doi.org/10.1007/s10904-017-0709-3.

    Article  CAS  Google Scholar 

  33. X. Q. Zhan, F. C. Tsai, L. Xie, K. D. Zhang, H. L. Liu, N. Ma, D. Shi, T. Jiang, Nanomaterials, 2018, 8, ARTN 655; DOI: https://doi.org/10.3390/nano8090655.

  34. M. Gholami, A. Hekmat, M. Khazaei, M. Darroudi, J. Mater. Sci.: Mater. Med., 2022, 33, ARTN 26; DOI: https://doi.org/10.1007/s10856-021-06574-y.

  35. K. A. Mocniak, I. Kubajewska, D. E. M. Spillane, G. R. Williams, R. E. Morris, RSC Adv., 2015, 5, 83648; DOI: https://doi.org/10.1039/c5ra14011k.

    Article  CAS  Google Scholar 

  36. C. Liu, X. Xu, J. Zhou, J. Yan, D. Wang, H. Zhang, BMC Mater., 2020, 2, ARTN 7; DOI: https://doi.org/10.1186/s42833-020-00013-y.

  37. L. Li, S. S. Han, S. Q. Zhao, X. R. Li, B. M. Liu, Y. Liu, RSC Adv., 2020, 10, 45130; DOI: https://doi.org/10.1039/d0ra08459j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H. F. Chen, Y. Fu, K. Feng, Y. F. Zhou, X. Wang, H. H. Huang, Y. Chen, W. H. Wang, Y. J. Xu, H. J. Tian, Y. Q. Mao, J. W. Wang, Z. Y. Zhang, J. Nanobiotechnol., 2021, 19, ARTN 298; DOI: https://doi.org/10.1186/s12951-021-01013-0.

  39. Z. Wan, C. Li, J. Gu, J. Qian, J. Zhu, J. Wang, Y. Li, J. Jiang, H. Chen, C. Luo, Int. J. Nanomed., 2021, 16, 6905; DOI: https://doi.org/10.2147/IJN.S330187.

    Article  CAS  Google Scholar 

  40. M. Fytory, K. K. Arafa, W. M. A. El Rouby, A. A. Farghali, M. Abdel-Hafiez, I. M. El-Sherbiny, Sci. Rep., 2021, 11, ARTN 19808; DOI: https://doi.org/10.1038/s41598-021-99407-5.

  41. N. Rabiee, M. Bagherzadeh, M. Heidarian Haris, A. M. Ghadiri, F. Matloubi Moghaddam, Y. Fatahi, R. Dinarvand, A. Jarahiyan, S. Ahmadi, M. Shokouhimehr, ACS Appl. Mater. Interfaces, 2021, 13, 10796; DOI: https://doi.org/10.1021/acsami.1c01460.

    Article  CAS  PubMed  Google Scholar 

  42. N. Rakhshani, N. H. Nemati, A. R. Saadatabadi, S. K. Sadrnezhaad, Int. J. Eng., 2021, 34, 1874; DOI: https://doi.org/10.5829/IJE.2021.34.08B.08.

    CAS  Google Scholar 

  43. M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, O. K. Farha, Chem. Commun., 2013, 49, 9449; DOI: https://doi.org/10.1039/c3cc46105j.

    Article  CAS  Google Scholar 

  44. I. Pakamore, J. Rousseau, C. Rousseau, E. Monflier, P. A. Szilagyi, Green Chem., 2018, 20, 5292; DOI: https://doi.org/10.1039/c8gc02312c.

    Article  CAS  Google Scholar 

  45. S. Jarupinthusophon, T. Luangsuphabool, T. Aree, T.-H. Duong, K. Lugsanangarm, P. Onsrisawat, P. Siripong, E. Sangvichien, W. Chavasiri, Nat. Prod. Commun., 2019, 14; DOI: https://doi.org/10.1177/1934578x19884383.

  46. L. Wang, Y. Song, A. Parikh, P. Joyce, R. Chung, L. Liu, F. Afinjuomo, J. D. Hayball, N. Petrovsky, T. G. Barclay, S. Garg, Pharmaceutics, 2019, 11, ARTN 581; DOI: https://doi.org/10.3390/pharmaceutics11110581.

  47. C. Ramos, C. Ladeira, S. Zeferino, A. Dias, I. Faria, E. Cristovam, M. Gomes, E. Ribeiro, Mutat. Res. — Genet. Toxicol. Environ. Mutagen., 2019, 838, 28; DOI: https://doi.org/10.1016/j.mrgentox.2018.11.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Vorotnikov or M. A. Shestopalov.

Additional information

Mikhail Aleksandrovich Shestopalov, born in 1984, Doctor of Chemical Sciences, Head of the Laboratory of Bioactive Inorganic Compounds of the Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Candidate for Professor of RAS at the election of 2022. M. A. Shestopalov specializes in cluster chemistry (mainly octahedral Mo, W, and Re cluster complexes) and cluster-containing materials and their potential applications in various fields, including biomedical applications such as photodynamic therapy and luminescent imaging. M. A. Shestopalov is the author of 94 scientific papers and seven patents. He supervised research and defense of two PhD Theses. He is a winner of the Prize of Novosibirsk Mayor’s Office in Science and Innovations in the category “The best young researcher in science organizations” (2019) and the Name Prize of the Government of the Novosibirsk Region in the category “The best research supervisor” (2020). He is an expert of the Russian Science Foundation (since 2020) and a RAS expert (since December, 2021).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 2, pp. 574–581, February, 2023.

The authors are grateful to the Center for the Collective Use of Microscopic Analysis of Biological Objects, Siberian Branch of the Russian Academy of Sciences (http://www.bionet.nsc.ru/microscopy/), for the provided research equipment.

No human or animal subjects were used in this research.

The authors declare no competing interests.

This study was financially supported by the Russian Science Foundation (Project No. 20-73-00147) and the Ministry of Science and Higher Education of the Russian Federation (Project No. 121031700321-3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konkova, A.V., Konovalov, D.I., Pozmogova, T.N. et al. Prolonged cytostatic effect of nanosized NH2-UiO-66 doped with doxorubicin. Russ Chem Bull 72, 574–581 (2023). https://doi.org/10.1007/s11172-023-3821-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3821-3

Key words

Navigation