Skip to main content
Log in

Regularities of aging of polymer and polymer composite materials in the conditions of the Far North

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A review of studies on the aging of polymer and polymer composite materials (PCM) in the extremely cold climate of Yakutia is presented. The possibilities of modern instrumental methods (thermal analysis, colorimetry, fractography, profilometry, diffusion analysis, etc.) for revealing of the mechanisms of physicochemical transformations, taking into account the gradients of property indices over the thickness of samples at early stages of aging, are demonstrated. It has been established that the main causes of abnormal deterioration of the strength indicators of PCM in Arctic conditions are daily and seasonal thermal and moisture cycles, which cause growth of internal stresses and formation of microcracks in polymer matrices. The peculiarities of climatic aging of PCM with a combination of mechanical loads are considered. Combining the principles of the kinetics of molecular physical and chemical transformations and linear fracture mechanics is the basis for further progress in modeling and predicting the durability of PCM in the conditions of the Far North.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. N. Kablov, M. P. Lebedev, O. V. Startsev, N. I. Golikov, in Mater. VI Evraziiskogo simpoziuma po problemam prochnosti materialov i mashin dlya regionov kholodnogo klimata [Proc. VI Eurasian Symposium on the Strength of Materials and Machines for Cold Climate Regions], Yakutsk, June 24–29, 2013, Akhsaan, Yakutsk, 2013, vol. 1, 5–7 (in Russian).

    Google Scholar 

  2. M. P. Lebedev, O. V. Startsev, A. K. Kychkin, V. V. Polyakov, Proc. Structural Integrity, 2020, 30, 76–81; DOI: https://doi.org/10.1016/j.prostr.2020.12.013.

    Article  Google Scholar 

  3. A. Hodzic, Ageing of Composites. Ed. R. Martin, Woodhead Publishing Limited, Cambridge, 2011, 517 pp.; DOI: https://doi.org/10.1017/S0001924000005911.

    Google Scholar 

  4. K. V. Pochiraju, G. P. Tandon, G. A. Schoeppner, Long-term durability of polymeric matrix composites, Springer, Boston, 2012, 677 pp.; DOI: https://doi.org/10.1007/978-1-4419-9308-3.

    Book  Google Scholar 

  5. C. C. White, K. M. White, L. E. Pickett, Service Life Prediction of Polymers and Plastics Exposed to Outdoor Weathering, William Andrew Publ., Norwich, 2017, 342 pp. ISBN: 9780323497763.

    Google Scholar 

  6. O. V. Startsev, L. I. Anikhovskaya, A. A. Litvinov, A. S. Krotov, Dokl. Chem., 2009, 428, 228–232; DOI: https://doi.org/10.1134/S0012500809090079.

    Article  CAS  Google Scholar 

  7. Z. K. Wang, X. L. Zhao, G. J. Xian, G. Wu, R. K. Singh Raman, S. Al-Saadi, Eighth International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, Hong Kong, China, 2016, 791–796.

  8. V. O. Startsev, M. P. Lebedev, A. K. Kychkin, Heliyon, 2018, 4, 10–60; DOI: https://doi.org/10.1016/j.heliyon.2018.e01060.

    Article  Google Scholar 

  9. E. N. Kablov, O. V. Startsev, Aviatsionnye materialy i tekhnologii [Aviation Materials and Technology], 2018, 47–58; DOI: https://doi.org/10.18577/2071-9140-2018-0-2-47-58 (in Russian).

  10. O. V. Startsev, M. P. Lebedev, Y. M. Vapirov, A. K. Kychkin, Mech. Compos. Mater., 2020, 56, 227–240; DOI: https://doi.org/10.1007/s11029-020-09875-5.

    Article  CAS  Google Scholar 

  11. I. I. Perepechko, Vvedenie vfiziku polimerov [Introduction to Polymer Physics], Khimiya, Moscow, 1978, 312 pp. (in Russian).

    Google Scholar 

  12. G. M. Bartenev, A. G. Barteneva, Relaksatsionnye svoistva polimerov [Relaxation Properties of Polymers], Khimiya, Moscow, 1992, 384 pp (in Russian).

    Google Scholar 

  13. T. V. Tropin, J. W. P. Schmelzer, V. L. Axsenov, Physics — Uspekhi. 2016, 99, 42–66; DOI: https://doi.org/10.3367/UFNr.0186.201601c.0047.

    Article  Google Scholar 

  14. O. V. Startsev, M. P. Lebedev, Polymer Sci., Ser. A, 2018, 60, 911–923; DOI: https://doi.org/10.1134/S0965545X19010073.

    Article  CAS  Google Scholar 

  15. L. Belec, T. H. Nguyen, D. L. Nguyen, J. F. Chailan, Composites Part A, 2015, 68, 235–241; DOI: https://doi.org/10.1016/J.COMPOSITESA.2014.09.028.

    Article  CAS  Google Scholar 

  16. V. O. Startsev, M. P. Lebedev, K. A. Khrulev, M. V. Molokov, A. S. Frolov, T. A. Nizina, Polym. Test., 2018, 65, 281–296; DOI: https://doi.org/10.1016/j.polymertesting.2017.12.007.

    Article  CAS  Google Scholar 

  17. S. Y. Park, W. J. Choi, C. H. Choi, H. S. Choi, Compos. Structures, 2019, 207, 81–92; DOI: https://doi.org/10.1016/J.COMPSTRUCT.2018.08.069.

    Article  Google Scholar 

  18. K. Zulueta, A. Burgoa, I. Martínez, J. Appl. Polymer Sci., 2020, Article 50009; DOI: https://doi.org/10.1002/app.50009.

  19. V. O. Startsev, M. P. Lebedev, M. V. Molokov, Mech. Compos. Mater., 2018, 54, 13–22; DOI: https://doi.org/10.1007/s11029-018-9713-0.

    Article  CAS  Google Scholar 

  20. V. O. Startsev, T. A. Nizina, O. V. Startsev, Inter.l Polym. Sci. Technol., 2016, 43, 45–49. DOI: https://doi.org/10.1177/0307174x1604300809.

    Article  Google Scholar 

  21. V. O. Startsev, A. S. Frolov, M. P. Lebedev, T. A. Nizina, Dokl. Phys. Chem., 2017, 476, 149–152; DOI: https://doi.org/10.1134/S0012501617090020.

    Article  CAS  Google Scholar 

  22. V. O. Startsev, M. P. Lebedev, A. S. Frolov, Vse materialy. Enziklopedicheskii spravochnik [All Materials. Encyclopedic Reference], 2018, № 6, 32–38 (in Russian).

    Google Scholar 

  23. V. O. Startsev, M. P. Lebedev, A. S. Frolov, Vse materialy. Enziklopedicheskii spravochnik [All Materials. Encyclopedic Reference], 2018, № 7, 24–29 (in Russian).

    Google Scholar 

  24. V. O. Startsev, M. P. Lebedev, A. S. Frolov, Plasticheskie massy [Plastics], 2018, 36–41 (in Russian).

  25. Z. Lan, J. Deng, Y. Song, Z. Xu, Y. Nie, Y. Chen, Y. Ma, Polymers, 2022, 14, Article 222; DOI: https://doi.org/10.3390/polym14020222.

  26. V. M. Potocic Matcovic, A. Sutlovic, M. I. Glogar, J. Inter. Colour Association, 2022, 28, 18–23.

    Google Scholar 

  27. F. F. Yildirim, A. S. Hicyilmaz, K. Yildirim, Polym. Test., 2022, 107, Art. 107484; DOI: https://doi.org/10.1016/j.polymertesting.2022.107484.

  28. E. N. Kablov, V. O. Startsev, Russian metallurgy (Metally), 2020, 2020, 364–372; DOI: https://doi.org/10.1134/S0036029520040102.

    Article  Google Scholar 

  29. O. V. Startsev, M. P. Lebedev, A. K. Kychkin, Polymer Sci., Ser. D, 2022, 15, 101–109; DOI: https://doi.org/10.1134/S1995421222010191.

    Article  CAS  Google Scholar 

  30. M. Cavasin, M. Sangermano, B. Thomson, S. Giannis, Materials, 2019, 12, 807; DOI: https://doi.org/10.3390/ma12050807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O. V. Startsev, I. N. Gulyaev, K. A. Pavlovskii, M. Yu. Ulkin, Materialovedenie [Material Science], 2017, 39–46 (in Russian).

  32. O. V. Startsev, A. V. Slavin, M. P. Lebedev, I. I. Noev, Dokl. Phys. Chem., 2018, 483, 145–150; DOI: https://doi.org/10.1134/S0012501618120023.

    Article  CAS  Google Scholar 

  33. V. G. Salnikov, O. V. Startsev, M. P. Lebedev, M. M. Kopirin, Yu. M. Vapirov, Vse materialy. Enziklopedicheskii spravochnik [All Materials. Encyclopedic Reference], 2022, № 5, 2–10 (in Russian).

    Google Scholar 

  34. E. N. Kablov, O. V. Startsev, Aviatsionnye materialy i tekhnologii [Aviation Materials and Technology], 2020, 47–58; DOI: https://doi.org/10.18577/2071-9140-2020-0-4-47-58 (in Russian).

  35. K. A. Kolesnik, Aviatsionnye materialy i tekhnologii [Aviation Materials and Technology], 2017, 77–86; DOI: https://doi.org/10.18577/2071-9140-2017-0-4-77-86 (in Russian).

  36. V. G. Salnikov, Monitor. Sys. Environ., 2021, 46–53; DOI: https://doi.org/10.33075/2220-5861-2021-2-46-53.

  37. V. O. Startsev, M. V. Molokov, M. P. Lebedev, D. R. Nizin, Polymer Sci. Ser. D, 2019, 12, 381–391; DOI: https://doi.org/10.1134/S1995421219040154.

    Article  CAS  Google Scholar 

  38. F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, N. Pugno, Prog. Mater. Sci., 2016, 83, 536–573; DOI: https://doi.org/10.1016/j.pmatsci.2016.07.007.

    Article  CAS  Google Scholar 

  39. Y. Lv, Y. Huang, J. Yang, M. Kong, H. Yang, J. Zhao, G. Li, Polym. Degrad. Stab., 2015, 112, 145–159; DOI: https://doi.org/10.1016/j.polymdegradstab.2014.12.023.

    Article  CAS  Google Scholar 

  40. N. M. Emanuel, Russ. Chem. Rev., 1979, 48, 2113.

    Article  CAS  Google Scholar 

  41. B. D. Gojkhmsn, T. P. Smekhuniva, Russ. Chem. Rev., 1980, 49, 1554.

    Google Scholar 

  42. G. M. Batenev, Prochnost i mekhanizm razrusheniya polimerov [Strength and Failure Mechanism of Polymers], Khimiya, Moscow, 1984, 280 pp (in Russian).

    Google Scholar 

  43. I. Nishizaki, I. Sasaki, T. Tomiyama, Proc. 6th International Conference on FRP Composites in Civil Engineering (CICE 2012), Rome, Italy, 1–5 June, 2012, 11–096.

  44. N. P. Andreeva, M. R. Pavlov, E. V. Nikolaev, A. O. Kurnosov, Trudy VIAM [Proc. VIAM], 2019, 105–114; DOI: https://doi.org/10.18577/2307-6046-2019-0-3-105-114 (in Russian).

  45. D. J. Baker, NASA Technical Paper 3468. ARL Technival Report 480, Hampton. Virginia, 1994, 54 pp.

  46. Aviatsionnye materialy. Spravochnik v 13 tomakh [Aviation Materials. Handbook in 13 vol.]. vol. 13. Ed. E. N. Kablov, VIAM, Moscow, 2015, 270 pp (in Russian).

  47. E. V. Nikolaev, S. L. Barbotko, N. P. Andreeva, M. R. Pavlov, D. V. Grashchenkov, Trudy VIAM [Proc. VIAM], 2016, 93–108; DOI: https://doi.org/10.18577/2307-6046-2016-0-6-11-11 (in Russian).

  48. V. O. Startsev, Rol’ fundamentalnykh issledovanii pri realizatsii strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda. Materialy VI Vsesoyuznoi nauchno-tekhnicheskoi konferentsii [The role of fundamental research in the implementation of the Strategic directions for the development of materials and technologies for their processing for the period up to 2030. Mater. VI All-Russian Scientific and Technical Conf.], 2020, 36–52 (in Russian).

  49. Yu. S. Urzhumtsev, I. N. Cherskii, Mech. Compos. Mater., 1986, 21, 498–504; DOI: https://doi.org/10.1007/BF00610902.

    Article  Google Scholar 

  50. V. O. Startsev, M. P. Lebedev, A. K. Kichkin, Izv. Altaiskogo gos. Universiteta [Bull. Altai State Univ.], 2020, 41–51; DOI: https://doi.org/10.14258/izvasu(2020)1-06 (in Russian).

  51. M. P. Lebedev, V. O. Startsev, M. G. Petrov, M. M. Kopirin, Vse materialy. Enziklopedicheskii spravochnik [All Materials. Encyclopedic Reference], 2022, № 4, 2–11 (in Russian).

    Google Scholar 

  52. P. K. Dutta, J. Cold Reg. Eng., 1988, 2, 124–134; DOI: https://doi.org/10.1061/(ASCE)0887-381X(1988)2:3(124.

    Article  Google Scholar 

  53. H. T. Hahn, J. Compos. Materials, 1976, 10, 266–278; DOI: https://doi.org/10.1177/002199837601000401.6666644466.

    Article  CAS  Google Scholar 

  54. O. V. Startsev, V. V. Polyakov, D. S. Salita, M. P. Lebedev, Dokl. Phys. Chem., 2020, 493, 91–94; DOI: https://doi.org/10.1134/S0012501620370010.

    Article  CAS  Google Scholar 

  55. O. V. Startsev, A. K. Kychkin, M. P. Lebedev, V. V. Polyakov, Proc. Structural Integrity, 2020, 30, 162–166; DOI: https://doi.org/10.1016/j.prostr.2020.12.025.

    Article  Google Scholar 

  56. A. K. Kychkin, O. V. Startsev, M. P. Lebedev, V. V. Polyakov, Proc. Structural Integrity, 2020, 30, 71–75; DOI: https://doi.org/10.1016/j.prostr.2020.12.012.

    Article  Google Scholar 

  57. O. V. Startsev, M. P. Lebedev, A. N. Blaznov, Vse materialy. Enziklopedicheskii spravochnik [All Materials. Encyclopedic Reference], 2020, № 10, 7–18; DOI: https://doi.org/10.31044/1994-6260-2020-0-10-7-18 (in Russian).

    Google Scholar 

  58. O. V. Startsev, M. P. Lebedev, A. N. Blaznov, Vse materialy. Enziklopedicheskii spravochnik [All Materials. Encyclopedic Reference], 2020, № 11, 2–12; DOI: https://doi.org/10.31044/1994-6260-2020-0-11-2-12 (in Russian).

    Google Scholar 

  59. E. V. Nikolaev, A. V. Slavin, O. V. Startsev, A. B. Laptev, Trudy VIAM [Proc. VIAM], 2021, 117–130; DOI: https://doi.org/10.18577/2307-6046-2021-0-9-117-130 (in Russian).

  60. V. N. Bulmanis, O. V. Startsev, Prognozirovanie izmeneniya prochnosti [Prediction of Strength Change], Yakutsk, 1988, 32 pp (in Russian).

  61. V. N. Bulmanis, N. S. Popov, T. A. Starzhenetskaya, S. A. Kuzmin, G. I. Milyutin, V. I. Poyakov, Mekhanika kompozitnykh materialov [Mechanisc of Composite Mater.], 1988, 525–528 (in Russian).

  62. V. N. Bulmanis, V. A. Yartsev, V. V. Krivonos, Mech. Compos. Mater., 1988, 23, 658–663; DOI: https://doi.org/10.1007/BF00605693.

    Article  Google Scholar 

  63. H. B. Dexter, Report NASA, 1987, No. NASA TM-89067, 188 p.

  64. I. Nishizaki, H. Sakurada, T. Tomiyama, Polymers, 2015, 7, 2494–2503; DOI: https://doi.org/10.3390/polym7121525.

    Article  CAS  Google Scholar 

  65. A. Kudo, G. Ben, 18 th International Conference of Composite Materials, 2011, W27-3.

  66. T. Keller, N. A. Theodorou, A. P. Vassilopoulos, J. de Castro, J. Compos. Construc., 2016, 20, 1–9; DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000589.

    Article  Google Scholar 

  67. V. A. Efimov, A. K. Shvedkova, T. G. Korenkova, V. N. Kirillov, Trudy VIAM [Proc. VIAM], 2013, 5 (in Russian).

  68. A. K. Shvedkova, A. P. Petrova, V. M. Buznik, Polymer Sci. Ser. D, 2016, 9, 165–171; DOI: https://doi.org/10.1134/S1995421216020210.

    Article  CAS  Google Scholar 

  69. E. A. Eskin, K. I. Kolesnik, A. S. Petrov, O. V. Startsev, V. P. Meletov, Strength Mater., 1982, 14, 1392–1397; DOI: https://doi.org/10.1007/BF00770142.

    Article  Google Scholar 

  70. R. Vodicka, DSTO Aeronautical and Maritime Research Lab., Melbourn, Australia, 2000, p. 23.

  71. A. Komorek, P. Przybyiek, W. Kucharczyk, Adv. Mater. Sci. Engineering, 2016, 2016, 3754912; DOI: https://doi.org/10.1155/2016/3754912.

    Article  Google Scholar 

  72. R. Cruz, L. Correia, A. Dushimimana, S. Cabral-Fonseca, J. Sena-Cruz, Materials, 2021, 14, Article 1533; DOI: https://doi.org/10.3390/ma14061533.

  73. M. G. Petrov, M. P. Lebedev, O. V. Startsev, M. M. Kopyrin, Dokl. Phys. Chem., 2021, 500, 85–91; DOI: https://doi.org/10.1134/S0012501621090037.

    Article  CAS  Google Scholar 

  74. M. P. Lebedev, O. V. Startsev, A. K. Kychkin, Heliyon, 2020, 6, 03481; DOI:https://doi.org/10.1016/j.heliyon.2020.e03481.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Startsev.

Additional information

Mikhail Petrovich Lebedev, born in 1958, General Director of the Yakutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, an expert in the field of materials science and technology of inorganic materials. He has developed the principles for obtaining highly efficient macroheterogeneous materials. Main scientific results are technological procedure for the fabrication of a nanomodified binder in a composite, a new approach to control the structure and phase composition of sintered carbide diamond-containing powder mixtures, the synergism of the processes of destruction and biocorrosion of polymer composite materials under the influence of an extremely cold climate. Prof. Lebedev is the author of 304 scientific papers, including 7 monographs and 41 patents. He is the supervisor of students, graduate students, and Dr Sci applicants. Three Ph.D. thesis were defended under his supervision. Lebedev is Professor and Head of the Department of Mechanical Engineering of the M. K. Ammosov North East Federal University, Coordinator of Scientific Programs of the Russian Academy of Sciences and the Siberian Branch of the Russian Academy of Sciences, Member of the Presidium of the Siberian Branch of the Russian Academy of Sciences, Member of the Scientific Council on the Arctics and Antarctic at the Presidium of the Russian Academy of Sciences, Member of the Editorial Board of the journals “Chemical Technology” and “Natural resources of the Arctics and Subarctics”, a member of the dissertation council at Komsomolskon-Amur State Technical University.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 2, pp. 5531–565, February, 2023.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, M.P., Startsev, O.V. Regularities of aging of polymer and polymer composite materials in the conditions of the Far North. Russ Chem Bull 72, 553–565 (2023). https://doi.org/10.1007/s11172-023-3819-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3819-1

Key words

Navigation