Skip to main content
Log in

Temperature behavior of the optical spectra of InP/ZnS nanocrystals stabilized by a polyvinylpyrrolidone-based coating

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The results of studies on the optical properties of colloidal InP/ZnS nanocrystals stabilized by a heterobifunctional polymer based on polyvinylpyrrolidone are presented. The optical absorption and photoluminescence spectra of (i) solutions containing different concentrations of nanocrystals and (ii) film samples, as well as the temperature dependences of these spectra in the range of 6.5–296 K are analyzed. An inhomogeneous broadening of the exciton optical bands was observed, which is associated with a broad size distribution of nanocrystals. It was established that the temperature-induced shift of the exciton absorption and emission maxima is mainly due to the interaction with acoustic phonons. It was shown that quenching of defect-related luminescence involves the local energy levels of the dangling bonds of phosphorus atoms at the core—shell interface, while the temperature stability of exciton emission is governed by the thickness of the ZnS shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Al. L. Efros, A. L. Efros, Sov. Phys. Semicond., 1982, 16, 772.

    Google Scholar 

  2. L. E. Brus, J. Chem. Phys., 1984, 80, 4403; DOI: https://doi.org/10.1063/1.447218.

    Article  CAS  Google Scholar 

  3. S. V. Gaponenko, Semicond., 1996, 30, 315.

    Google Scholar 

  4. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge University Press, 1998, 245 pp.; DOI: https://doi.org/10.1017/CBO9780511524141.

  5. A. P. Alivisatos, Science, 1996, 271, 933; DOI: https://doi.org/10.1126/science.271.5251.933.

    Article  CAS  Google Scholar 

  6. A. I. Arzhanov, A. O. Savostianov, K. A. Magaryan, K. R. Karimullin, A. V. Naumov, Photonics Russ., 2021, 15, 622; DOI: https://doi.org/10.22184/1993-7296.FRos.2021.15.8.622.641.

    Article  Google Scholar 

  7. A. L. Efros, L. E. Brus, ACS Nano, 2021, 15, 6192; DOI: https://doi.org/10.1021/acsnano.1c01399.

    Article  CAS  PubMed  Google Scholar 

  8. E. A. Podshivaylov, M. A. Kniazeva, A. A. Gorshelev, I. Y. Eremchev, A. V. Naumov, P. A. Frantsuzov, J. Chem. Phys., 2019, 151, 174710; DOI: https://doi.org/10.1063/1.5124913.

    Article  PubMed  Google Scholar 

  9. S. S. Savchenko, A. S. Vokhmintsev, I. A. Weinstein, AIP Conf. Proc., 2016, 1717, 040028; DOI: https://doi.org/10.1063/1.4943471.

    Article  Google Scholar 

  10. S. S. Savchenko, A. S. Vokhmintsev, I. A. Weinstein, AIP Conf. Proc., 2018, 2015, 020085; DOI: https://doi.org/10.1063/1.5055158.

    Article  Google Scholar 

  11. A. I. Arzhanov, A. O. Savostianov, K. A. Magaryan, K. R. Karimullin, A. V. Naumov, Photonics Russ., 2022, 16, 96; DOI: https://doi.org/10.22184/1993-7296.FRos.2022.16.2.96.112.

    Article  Google Scholar 

  12. K. R. Karimullin, A. I. Arzhanov, A. V. Naumov, Bull. Russ. Acad. Sci., Physics, 2018, 82, 1478; DOI: https://doi.org/10.3103/S1062873818080191.

    Article  CAS  Google Scholar 

  13. D. O. Sagdeev, R. R. Shamilov, V. K. Voronkova, A. A. Sukhanov, Y. G. Galyametdinov, Russ. Chem. Bull., 2020, 69, 1749; DOI: https://doi.org/10.1007/s11172-020-2958-5.

    Article  CAS  Google Scholar 

  14. M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, K. C. Mishra, ECS J. Solid State Sci. Technol., 2013, 2, R3017; DOI: https://doi.org/10.1149/2.016302jss.

    Article  Google Scholar 

  15. J. R. Heath, J. J. Shiang, Chem. Soc. Rev., 1998, 27, 65; DOI: https://doi.org/10.1039/a827065z.

    Article  CAS  Google Scholar 

  16. S. B. Brichkin, Colloid J., 2015, 77, 393; DOI: https://doi.org/10.1134/S1061933X15040043.

    Article  CAS  Google Scholar 

  17. P. Mushonga, M.O. Onani, A.M. Madiehe, M. Meyer, J. Nanomater., 2012, 2012, 869284; DOI: https://doi.org/10.1155/2012/869284.

    Article  Google Scholar 

  18. V. Brunetti, H. Chibli, R. Fiammengo, A. Galeone, M. A. Malvindi, G. Vecchio, R. Cingolani, J. L. Nadeau, P. P. Pompa, Nanoscale, 2013, 5, 307; DOI: https://doi.org/10.1039/C2NR33024E.

    Article  CAS  PubMed  Google Scholar 

  19. H. Chibli, L. Carlini, S. Park, N. M. Dimitrijevic, J. L. Nadeau, Nanoscale, 2011, 3, 2552; DOI: https://doi.org/10.1039/c1nr10131e.

    Article  CAS  PubMed  Google Scholar 

  20. D. Ayupova, G. Dobhal, G. Laufersky, T. Nann, R. Goreham, Nanomaterials, 2019, 9, 135; DOI: https://doi.org/10.3390/nano9020135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Z. Ayed, S. Malhotra, G. Dobhal, R. V. Goreham, Nanomaterials, 2021, 11, 3317; DOI: https://doi.org/10.3390/nano11123317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. K. T. Yong, H. Ding, I. Roy, W. C. Law, E. J. Bergey, A. Maitra, P. N. Prasad, ACS Nano, 2009, 3, 502; DOI: https://doi.org/10.1021/nn8008933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Massadeh, T. Nann, Nanomater. Nanotechnol., 2014, 4, 1; DOI: https://doi.org/10.5772/58523.

    Article  Google Scholar 

  24. J. Zhang, Y. Wang, Z. Xu, C. Shi, X. Yang, Food Chem., 2022, 384, 132521; DOI: https://doi.org/10.1016/j.foodchem.2022.132521.

    Article  CAS  PubMed  Google Scholar 

  25. G. V. Lisichkin, A. Y. Olenin, Russ. Chem. Bull., 2020, 69, 1819; DOI: https://doi.org/10.1007/s11172-020-2968-3.

    Article  CAS  Google Scholar 

  26. I. V. Fadeeva, A. A. Forysenkova, E. S. Trofimchuk, M. R. Gafurov, A. I. Ahmed, G. A. Davidova, O. S. Antonova, S. M. Barinov, Russ. Chem. Bull., 2022, 71, 543; DOI: https://doi.org/10.1007/s11172-022-3446-x.

    Article  CAS  Google Scholar 

  27. S. V. Dezhurov, D. V. Krylsky, A. V. Rybakova, S. A. Ibragimova, P. P. Gladyshev, A. A. Vasiliev, O. S. Morenkov, Adv. Nat. Sci. Nanosci. Nanotechnol., 2018, 9, 015002; DOI: https://doi.org/10.1088/2043-6254/aa9de8.

    Article  Google Scholar 

  28. M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, Z. Hens, Chem. Mater., 2015, 27, 4893; DOI: https://doi.org/10.1021/acs.chemmater.5b02138.

    Article  CAS  Google Scholar 

  29. S. S. Savchenko, A. S. Vokhmintsev, I. A. Weinstein, Opt. Mater. Express., 2017, 7, 354; DOI: https://doi.org/10.1364/OME.7.000354.

    Article  CAS  Google Scholar 

  30. A. S. Vokhmintsev, M. G. Minin, D. V. Chaykin, I. A. Weinstein, Instrum. Exp. Tech., 2014, 57, 369; DOI: https://doi.org/10.1134/S0020441214020328.

    Article  CAS  Google Scholar 

  31. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuller, U. Resch-Genger, Anal. Chem., 2009, 81, 6285; DOI: https://doi.org/10.1021/ac900308v.

    Article  CAS  Google Scholar 

  32. G. Talsky, Derivative Spectrophotometry: Low and Higher Order, VCH, Weinheim, 1994, 229 pp.

    Book  Google Scholar 

  33. S. Savchenko, A. Vokhmintsev, I. Weinstein, in Core/Shell Quantum Dots: Synthesis, Properties and Devices, Eds X. Tong and Z. M. Wang, Springer, Cham, 2020, 165 pp.; DOI: https://doi.org/10.1007/978-3-030-46596-4_5.

    Google Scholar 

  34. S. S. Savchenko, A. S. Vokhmintsev, I. A. Weinstein, J. Phys. Conf. Ser., 2018, 961, 012003; DOI: https://doi.org/10.1088/1742-6596/961/1/012003.

    Article  Google Scholar 

  35. O. I. Mićić, S. P. Ahrenkiel, A. J. Nozik, Appl. Phys. Lett., 2001, 78, 4022; DOI: https://doi.org/10.1063/1.1379990.

    Article  Google Scholar 

  36. H. Fu, A. Zunger, Phys. Rev. B., 1998, 57, R15064; DOI: https://doi.org/10.1103/PhysRevB.57.R15064.

    Article  CAS  Google Scholar 

  37. S. S. Savchenko, A. S. Vokhmintsev, I. A. Weinstein, Tech. Phys. Lett., 2017, 43, 297; DOI: https://doi.org/10.1134/S1063785017030221.

    Article  CAS  Google Scholar 

  38. A. P. Babichev, Fizicheskie velichiny: Spravochnik [A Handbook of Physical Quantities], Eds I. S. Griroryev and E. Z. Meylikhov, Energoatomizdat, Moscow, 1991, 1232 pp. (in Russian).

    Google Scholar 

  39. H. Weller, U. Koch, M. Gutiérrez, A. Henglein, Berichte der Bunsengesellschaft für Phys. Chemie, 1984, 88, 649; DOI: https://doi.org/10.1002/bbpc.19840880715.

    Article  CAS  Google Scholar 

  40. Y. Zhang, M. Ma, X. Wang, D. Fu, N. Gu, J. Liu, Z. Lu, Y. Ma, L. Xu, K. Chen, J. Phys. Chem. Solids, 2002, 63, 2115; DOI: https://doi.org/10.1016/S0022-3697(02)00259-7.

    Article  CAS  Google Scholar 

  41. R. Kho, C. L. Torres-Martínez, R. K. Mehra, J. Colloid Interface Sci., 2000, 227, 561; DOI: https://doi.org/10.1006/jcis.2000.6894.

    Article  CAS  PubMed  Google Scholar 

  42. S. S. Savchenko, A. S. Vokhmintsev, I. A. Weinstein, J. Phys. Conf. Ser., 2016, 741, 012151; DOI: https://doi.org/10.1088/1742-6596/741/1/012151.

    Article  Google Scholar 

  43. I. A. Vainshtein, A. F. Zatsepin, V. S. Kortov, Phys. Solid State, 1999, 41, 905; DOI: https://doi.org/10.1134/1.1130901.

    Article  CAS  Google Scholar 

  44. A. E. Eskova, A. I. Arzhanov, K. A. Magaryan, K. R. Karimullin, A. V. Naumov, Bull. Russ. Acad. Sci., Physics, 2020, 84, 40; DOI: https://doi.org/10.3103/S1062873820010116.

    Article  CAS  Google Scholar 

  45. K. R. Karimullin, A. I. Arzhanov, I. Y. Eremchev, B. A. Kulnitskiy, N. V. Surovtsev, A. V. Naumov, Laser Phys., 2019, 29, 124009; DOI: https://doi.org/10.1088/1555-6611/ab4bdb.

    Article  CAS  Google Scholar 

  46. W. J. Turner, W. E. Reese, G. D. Pettit, Phys. Rev., 1964, 136, 1955; DOI: https://doi.org/10.1103/PhysRev.136.A1467.

    Article  Google Scholar 

  47. A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, A. Polimeni, ACS Nano, 2015, 9, 4277; DOI: https://doi.org/10.1021/acsnano.5b00699.

    Article  CAS  PubMed  Google Scholar 

  48. A. Narayanaswamy, L. F. Feiner, P. J. van der Zaag, J. Phys. Chem. C., 2008, 112, 6775; DOI: https://doi.org/10.1021/jp800339m.

    Article  CAS  Google Scholar 

  49. A. Narayanaswamy, L. F. Feiner, A. Meijerink, P. J. van der Zaag, ACS Nano, 2009, 3, 2539; DOI: https://doi.org/10.1021/nn9004507.

    Article  CAS  PubMed  Google Scholar 

  50. S. S. Savchenko, I. A. Weinstein, Nanomaterials, 2019, 9, 716; DOI: https://doi.org/10.3390/nano9050716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. T. Chen, K. Li, H. Mao, Y. Chen, J. Wang, G. Weng, J. Electron. Mater., 2019, 48, 3497; DOI: https://doi.org/10.1007/s11664-019-07106-9.

    Article  CAS  Google Scholar 

  52. C. Wang, Q. Wang, Z. Zhou, W. Wu, Z. Chai, Y. Gao, D. Kong, J. Lumin., 2020, 225, 117354; DOI: https://doi.org/10.1016/j.jlumin.2020.117354.

    Article  CAS  Google Scholar 

  53. T. T. Pham, T. K. Chi Tran, Q. L. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol., 2011, 2, 025001; DOI: https://doi.org/10.1088/2043-6262/2/2/025001.

    Article  Google Scholar 

  54. L. Biadala, B. Siebers, Y. Beyazit, M. D. Tessier, D. Dupont, Z. Hens, D. R. Yakovlev, M. Bayer, ACS Nano, 2016, 10, 3356; DOI: https://doi.org/10.1021/acsnano.5b07065.

    Article  CAS  PubMed  Google Scholar 

  55. S. S. Savchenko, A. S. Vokhmintsev, I. A. Weinstein, J. Lumin., 2022, 242, 118550; DOI: https://doi.org/10.1016/j.jlumin.2021.118550.

    Article  CAS  Google Scholar 

  56. S. S. Savchenko, A. S. Vokhmintsev, I. A. Weinstein, J. Phys. Conf. Ser., 2020, 1537, 012015; DOI: https://doi.org/10.1088/1742-6596/1537/1/012015.

    Article  CAS  Google Scholar 

  57. S. S. Savchenko, A. S. Vokhmintsev, I. A. Weinstein, in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA, Washington, D. C., 2018, NoW1J.4; DOI: https://doi.org/10.1364/NOMA.2018.NoW1J.4.

    Google Scholar 

  58. E. M. Janke, N. E. Williams, C. She, D. Zherebetskyy, M. H. Hudson, L. Wang, D. J. Gosztola, R. D. Schaller, B. Lee, C. Sun, G. S. Engel, D. V. Talapin, J. Am. Chem. Soc., 2018, 140, 15791; DOI: https://doi.org/10.1021/jacs.8b08753.

    Article  CAS  PubMed  Google Scholar 

  59. E. Cho, T. Kim, S. Choi, H. Jang, K. Min, E. Jang, ACS Appl. Nano Mater., 2018, 1, 7106; DOI: https://doi.org/10.1021/acsanm.8b01947.

    Article  CAS  Google Scholar 

  60. G. F. Alfrey, P. H. Borcherds, J. Phys. C Solid State Phys., 1972, 5, L275; DOI: https://doi.org/10.1088/0022-3719/5/20/002.

    Article  CAS  Google Scholar 

  61. T. Watanabe, K. Takahashi, K. Shimura, D. Kim, Phys. Rev. B, 2017, 96, 035305; DOI: https://doi.org/10.1103/PhysRevB.96.035305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Weinstein.

Additional information

Weinstein Ilya Alexandrovich, born 1968, Head of Chair at the Ural Federal University named after the First President of Russia B. N. Yeltsin (Ekaterinburg, Russia), Doctor of Sicence in Physics and Mathematics, Professor, Honored Worker of Science and High Technologies of the Russian Federation, Professor at the Russian Academy of Sciences. He is a specialist in physical chemistry of inorganic optical materials and has recognized achievements. I. A. Weinstein is the author of more than 250 scientific publications including nearly 120 articles indexed in the Web of Science and/or Scopus databases (more than 1200 citations) and more than 150 articles indexed in Russian Science Citation Index Database, 2 monographs, 15 Russian Federation patents for inventions and useful models, and 20 certificates of registration of computer programs. Key scientific results obtained by I. A. Weinstein include practical implementation of original experimental techniques of electrochemical synthesis and comprehensive analysis of unique physicochemical properties of inorganic functional materials with nanoscale morphological features, studies of fundamental effects and the role of atomic disorder in the formation of electronic-optical properties of multicomponent glassy media, development of principles of evolutionary modeling of radiation-stimulated processes in irradiated oxide and nitride systems with the complex structure of energy states in the band gap, design of layered memristor matrices based on nanotubular nonstoichiometric titania, zirconia, and hafnia with controlled quantum conductors and multiple resistive states. I. A. Weinstein is a member of Editorial Board of Russian Journal of Nondestructive Testing, the organizer and Director of the “Nanomaterials and Nanotechnologies” Research and Educational Center at the Ural Federal University, Principal Researcher at the Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, and a member of the Council on Scientific Instrumentation at the Ministry of Science and Education of the Russian Federation.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 2, pp. 534–545, February, 2023.

No human or animal subjects were used in this research.

The authors declare no competing interests.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Project FEUZ-2023-0014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinstein, I.A., Savchenko, S.S. Temperature behavior of the optical spectra of InP/ZnS nanocrystals stabilized by a polyvinylpyrrolidone-based coating. Russ Chem Bull 72, 534–545 (2023). https://doi.org/10.1007/s11172-023-3817-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3817-8

Key words

Navigation