Skip to main content
Log in

One-dimensional europium coordination polymer with redox-active ligands

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The one-dimensional (1D) coordination polymer [(dpp-bian)Eu2+(4,4-bipy)-(THF)2·4THF]n(1) (dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene; 4,4′-bipy is 4,4′-bipyridine) was synthesized by the oxidation of the complex [(dpp-bian)2−-Eu2+(THF)4] with neutral 4,4′-bipy in tetrahydrofuran (THF). According to the single-crystal X-ray diffraction analysis, the coordination polymer chain in 1 consists of alternating europium(II) ions and 4,4′-bipyridine radical anions. Acenaphthene-1,2-diimine dpp-bian acts as a terminal chelating radical-anion ligand. The europium(II) atom is coordinated by four nitrogen atoms and two oxygen atoms of THF molecules. According to the thermogravimetric analysis, the thermal decomposition of 1 occurs in four steps. An increase in the magnetic moment of compound 1 in the range from 40 to 5 K is due to the ferromagnetic exchange interaction between the spins of dpp-bian (S = 1/2) and 4,4′-bipy radical anions (S = 1/2) and the spin of the Eu2+ ion (S = 7/2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Election of the Full Members (Academicians), Corresponding Members, and Foreign Members of the Russian Academy of Sciences, Russ. Chem. Bull., 2022, 71, 1559; DOI: https://doi.org/10.1007/s11172-022-3565-4.

    Article  Google Scholar 

  2. J. Rocha, C. D. S. Brites, L. D. Carlos, Chem. Eur. J., 2016, 22, 14782; DOI: https://doi.org/10.1002/chem.201600860.

    Article  CAS  PubMed  Google Scholar 

  3. V. Trannoy, A. N. Carneiro Neto, C. D. S. Brites, L. D. Carlos, H. Serier-Brault, Adv. Optical. Mater., 2021, 9, 2001938; DOI: https://doi.org/10.1002/adom.202001938.

    Article  CAS  Google Scholar 

  4. Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev., 2014, 43, 5815; DOI: https://doi.org/10.1039/C4CS00010B.

    Article  CAS  PubMed  Google Scholar 

  5. B. Chen, S. Xiang, G. Qian, Acc. Chem. Res., 2010, 43, 1115; DOI: https://doi.org/10.1021/ar100023y.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Zhou, H.-H. Chen, B. Yan, J. Mater. Chem. A., 2014, 2, 13691; DOI: https://doi.org/10.1039/c4ta01297f.

    Article  CAS  Google Scholar 

  7. Y.-N. Gong, L. Jiang, T.-B. Lu, Chem. Commun., 2013, 49, 11113; DOI: https://doi.org/10.1039/C3CC46530F.

    Article  CAS  Google Scholar 

  8. X. Zhang, Z. Zhan, X. Liang, C. Chen, X. Liu, Y. Jia, M. Hu, Dalton Trans., 2018, 47, 3272; DOI: https://doi.org/10.1039/C7DT02966G.

    Article  CAS  PubMed  Google Scholar 

  9. S. E. Miller, M. H. Teplensky, P. Z. Moghadam, D. Fairen-Jimenez, Interface Focus., 2016, 6, DOI: https://doi.org/10.1098/rsfs.2016.0027.

  10. M. A. Agafonov, E. V. Alexandrov, N. A. Artyukhova, G. E. Bekmukhamedov, V. A. Blatov, V. V. Butova, Y. M. Gayfulin, A. A. Garibyan, Z. N. Gafurov, Yu. G. Gorbunova, L. G. Gordeeva, M. S. Gruzdev, A. N. Gusev, G. L. Denisov, D. N. Dybtsev, Yu. Yu. Enakieva, A. A. Kagilev, A. O. Kantyukov, M. A. Kiskin, K. A. Kovalenko, A. M. Kolker, D. I. Kolokolov, Y. M. Litvinova, A. A. Lysova, N. V. Maksimchuk, Y. V. Mironov, Yu. V. Nelyubina, V. V. Novikov, V. I. Ovcharenko, A. V. Piskunov, D. M. Polyukhov, V. A. Polyakov, V. G. Ponomareva, A. S. Poryvaev, G. V. Romanenko, A. V. Soldatov, M. V. Solovyeva, A. G. Stepanov, I. V. Terekhova, O. Yu. Trofimova, V. P. Fedin, M. V. Fedin, O. A. Kholdeeva, A. Yu. Tsivadze, U. V. Chervonova, A. I. Cherevko, V. F. Shul’gin, E. S. Shutova, D. G. Yakhvarov, J. Struct. Chem., 2022, 63, 671; DOI: https://doi.org/10.1134/S0022476622050018.

    Article  CAS  Google Scholar 

  11. N. L. Bazyakina, V. M. Makarov, S. Yu. Ketkov, A. S. Bogomyakov, R. V. Rumyantcev, V. I. Ovcharenko, I. L. Fedushkin, Inorg. Chem., 2021, 60, 3238; DOI: https://doi.org/10.1021/acs.inorgchem.0c03647.

    Article  CAS  PubMed  Google Scholar 

  12. T. S. Koptseva, N. L. Bazyakina, M. V. Moskalev, E. V. Baranov, I. L. Fedushkin, Eur. J. Inorg. Chem., 2021, 2021, 675; DOI: https://doi.org/10.1002/ejic.202001013.

    Article  CAS  Google Scholar 

  13. N. L. Bazyakina, M. V. Moskalev, A. V. Cherkasov, V. M. Makarov, I. L. Fedushkin, CrystEngComm., 2022, 24, 2297; DOI: https://doi.org/10.1039/d1ce01698a.

    Article  CAS  Google Scholar 

  14. M. S. Denning, M. Irwin, J. M. Goicoechea, Inorg. Chem., 2008, 47, 6118; DOI: https://doi.org/10.1021/ic800726p.

    Article  CAS  PubMed  Google Scholar 

  15. J. Ding, C. Zheng, L. Wang, C. Lu, B. Zhang, Y. Chen, M. Li, G. Zhai, X. Zhuang, J. Mater. Chem. A., 2019, 7, 23337; DOI: https://doi.org/10.1039/C9TA01724K.

    Article  CAS  Google Scholar 

  16. H.-Y. Li, H. Xu, S.-Q. Zang, T. C. W. Mak, Chem. Commun., 2016, 52, 525; DOI: https://doi.org/10.1039/c5cc08168h.

    Article  CAS  Google Scholar 

  17. I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, G. K. Fukin, Angew. Chem., Int. Ed., 2003, 42, 3294; DOI: https://doi.org/10.1002/anie.200351408.

    Article  CAS  Google Scholar 

  18. K. V. Kalyan, M. Findlater, A. H. Cowley, Chem. Commun., 2008, 1918; DOI: https://doi.org/10.1039/b719251g.

  19. A. A. Skatova, D. S. Yambulatov, I. L. Fedyushkin, E. V. Baranov, Russ. J. Coord. Chem., 2018, 44, 400; DOI: https://doi.org/10.1134/S1070328418060064.

    Article  CAS  Google Scholar 

  20. I. L. Fedushkin, D. S. Yambulatov, A. A. Skatova, E. V. Baranov, S. Demeshko, A. S. Bogomyakov, V. I. Ovcharenko, E. M. Zueva, Inorg. Chem., 2017, 56, 9825; DOI: https://doi.org/10.1021/acs.inorgchem.7b01344.

    Article  CAS  PubMed  Google Scholar 

  21. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Cryst., 2020, 53, 226; DOI: https://doi.org/10.1107/S1600576719014092.

    Article  CAS  Google Scholar 

  22. A. L. Spek, Acta Cryst., 2009, 65, 148; DOI: https://doi.org/10.1107/S090744490804362X.

    CAS  Google Scholar 

  23. I. L. Fedushkin, A. A. Skatova, D. S. Yambulatov, A. V. Cherkasov, S. V. Demeshko, Russ. Chem. Bull., 2015, 64, 38; DOI: https://doi.org/10.1007/s11172-015-0817-6.

    Article  CAS  Google Scholar 

  24. SAINT, Data Reduction and Correction Program, v. 8.27B, Bruker AXS, Madison, Wisconsin, USA, 2014.

    Google Scholar 

  25. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr., 2015, 48, 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv., 2015, 71, 3.

    Article  Google Scholar 

  27. G. M. Sheldrick, Acta Crystallogr. Sect. C: Struct. Chem., 2015, 71, 3.

    Article  Google Scholar 

  28. A. L. Spek, Acta Crystallogr. Sect. C: Struct. Chem., 2015, 71, 9; DOI: https://doi.org/10.1107/S2053229614024929.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Bogomyakov or I. L. Fedushkin.

Additional information

Igor Leonidovich Fedushkin, born in 1966, Doctor of Chemical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences since 2011, Director of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences (Nizhny Novgorod), expert in the field of coordination and physical organic chemistry, elected as an Academician of the Russian Academy of Sciences in 2022 (for more detailed information, see Ref. 1).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 2, pp. 507–517, February, 2023.

No human or animal subjects were used in this research.

The authors declare no competing interests.

The study was financially supported by the Russian Science Foundation (Project No. 19-13-00336-Π) and was performed using the equipment of the Center for Collective Use “Analytical Center of the IOMC RAS” (Grant “Ensuring the Development of the Material and Technical Infrastructure of the Centers for Collective Use of Scientific Equipment,” unique identifier RF—2296.61321X0017, agreement number 075-15-2021-670).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazyakina, N.L., Moskalev, M.V., Rumyantcev, R.V. et al. One-dimensional europium coordination polymer with redox-active ligands. Russ Chem Bull 72, 507–517 (2023). https://doi.org/10.1007/s11172-023-3814-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3814-5

Key words

Navigation