Skip to main content
Log in

Formation of thiovanadyl porphyrins under a high-temperature treatment of heavy crude oil

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

It has been shown for the first time that the high-temperature treatment of heavy oil with a high content of asphaltenes at 350–450 °C without a catalyst or H2 leads to the formation of new vanadium(IV) porphyrin complexes detected by ESR spectroscopy. In anisotropic spectra of treated oil samples recorded at 130 K, together with the signals of the porphyrin complex of the vanadyl ion, VO2+, another component with distinct g and A spin Hamiltonian parameters was observed. A comparative analysis of the resonance parameters of the revealed complexes allowed us to unambiguously identify them as the thiovanadyl (VS2+) porphyrins formed during the thermal treatment. Thus, the formation of thiovanadyl porphyrins from vanadyl porphyrins in asphaltene-containing heavy oils at high-temperature processing has been experimentally proven for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Ancheyta, Deactivation of Heavy Oil Hydroprocessing Catalysts. Fundamentals and Modeling, John Wiley & Sons Ltd., Hoboken, NJ, USA, 2016.

    Book  Google Scholar 

  2. L. O. Oyekunle, O. B. Ikpekri, Ind. Eng. Chem. Res., 2004, 43, 6647–6653; DOI: https://doi.org/10.1021/ie049618y.

    Article  CAS  Google Scholar 

  3. M. J. Ledoux, S. Hantzer, Catal. Today, 1990, 7, 479–496; DOI: https://doi.org/10.1016/0920-5861(90)80005-A.

    Article  CAS  Google Scholar 

  4. N. K. Nadirov, Pet. Chem. USSR, 1984, 24, 117–125; DOI: https://doi.org/10.1016/0031-6458(84)90001-7.

    Google Scholar 

  5. A. C. Jenifer, P. Sharon, A. Prakash, P. C. Sande, Energy Fuels, 2015, 29, 7743–7752; DOI: https://doi.org/10.1021/acs.energyfuels.5b00826.

    Article  CAS  Google Scholar 

  6. A. E. Abdrabo, M. M. Husein, Energy Fuels, 2012, 26, 810–815; DOI: https://doi.org/10.1021/ef201819j.

    Article  CAS  Google Scholar 

  7. S. Wang, J. Yang, X. Xu, Fuel, 2011, 90, 987–991; DOI: https://doi.org/10.1016/j.fuel.2010.11.036.

    Article  CAS  Google Scholar 

  8. S. G. Yakubova, G. R. Abilova, E. G. Tazeeva, D. I. Tazeev, N. A. Mironov, D. V. Milordov, M. R. Yakubov, Pet. Chem., 2022, 62, 83–93; DOI: https://doi.org/10.1134/S0965544122010030.

    Article  CAS  Google Scholar 

  9. T. Kim, J. Ryu, M.-J. Kim, H.-J. Kim, Y.-G. Shul, Y. Jeon, J.-I. Park, Fuel, 2014, 117, 783–791; DOI: https://doi.org/10.1016/j.fuel.2013.10.001.

    Article  CAS  Google Scholar 

  10. R. Agrawal, J. Wei, Ind. Eng. Chem. Process Des. Dev., 1984, 23, 515–522; DOI: https://doi.org/10.1021/i200026a018.

    Article  CAS  Google Scholar 

  11. R. A. Ware, J. Wei, J. Catal., 1985, 93, 100–121; DOI: https://doi.org/10.1016/0021-9517(85)90155-1.

    Article  CAS  Google Scholar 

  12. R. Salcedo, I. P. Zaragoza, J. M. Martínez-Magadán, I. García-Cruz, J. Mol. Struct. THEOCHEM, 2003, 626, 195–201; DOI: https://doi.org/10.1016/S0166-1280(03)00083-6.

    Article  CAS  Google Scholar 

  13. P. I. Premović, L. S. Jovanović, S. B. Zlatković, J. Serbian Chem. Soc., 1996, 61, 149–157; https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030532861&partnerID=40&md5=8063374d2bd1bcd1545fc2e2b4a4d5a9.

    Google Scholar 

  14. V. Garcia-Montoto, S. Verdier, Z. Maroun, R. Egeberg, J. L. Tiedje, S. Sandersen, P. Zeuthen, B. Bouyssiere, Fuel Process. Technol., 2020, 201, 106341; DOI: https://doi.org/10.1016/j.fuproc.2020.106341.

    Article  CAS  Google Scholar 

  15. P. C. H. Mitchell, C. E. Scott, Polyhedron, 1986, 5, 237–241; DOI: https://doi.org/10.1016/S0277-5387(00)84916-5.

    Article  CAS  Google Scholar 

  16. E. Furimsky, F. E. Massoth, Catal. Today, 1999, 52, 381–495; DOI: https://doi.org/10.1016/S0920-5861(99)00096-6.

    Article  CAS  Google Scholar 

  17. C.-S. Kim, F. E. Massoth, Fuel Process Technol., 1993, 35, 289–302; DOI: https://doi.org/10.1016/0378-3820(93)90104-C.

    Article  CAS  Google Scholar 

  18. J. P. Janssens, G. Elst, E. G. Schrikkema, A. D. van Langeveld, S. T. Sie, J. A. Moulijn, Recl. Des Trav. Chim. Des Pays-Bas., 1996, 115, 465–473; DOI: https://doi.org/10.1002/recl.19961151104.

    Article  CAS  Google Scholar 

  19. Q. Cui, X. Ma, K. Nakabayashi, J. Miyawaki, A. Al-Mutairi, A. M. J. Marafi, A. M. Al-Otaibi, S.-H. Yoon, I. Mochida, J. Phys. Chem. C, 2019, 123, 20587–20593; DOI: https://doi.org/10.1021/acs.jpcc.9b04808.

    Article  CAS  Google Scholar 

  20. M. R. Gafurov, M. A. Volodin, A. A. Rodionov, A. T. Sorokina, M. Y. Dolomatov, A. V. Petrov, A. V. Vakhin, G. V. Mamin, S. B. Orlinskii, J. Pet. Sci. Eng., 2018, 166, 363–368; DOI: https://doi.org/10.1016/j.petrol.2018.02.045.

    Article  CAS  Google Scholar 

  21. S. N. Trukhan, S. G. Kazarian, O. N. Martyanov, Energy Fuels, 2017, 31, 387–394; DOI: https://doi.org/10.1021/acs.energyfuels.6b02572.

    Article  CAS  Google Scholar 

  22. S. N. Trukhan, V. F. Yudanov, A. A. Gabrienko, V. Subramani, S. G. Kazarian, O. N. Martyanov, Energy Fuels, 2014, 28, 6315–6321; DOI: https://doi.org/10.1021/ef5015549.

    Article  CAS  Google Scholar 

  23. V. M. Malhotra, H. A. Buckmaster, Fuel, 1985, 64, 335–341; DOI: https://doi.org/10.1016/0016-2361(85)90420-X.

    Article  CAS  Google Scholar 

  24. J. S. Hwang, M. O. H. Al-Turabi, L. El-Sayed, H. A. M. Al-Gwidi, Energy Fuels, 2000, 14, 179–183; DOI: https://doi.org/10.1021/ef9901084.

    Article  CAS  Google Scholar 

  25. D. Gourier, O. Delpoux, A. Bonduelle, L. Binet, I. Ciofini, H. Vezin, J. Phys. Chem. B, 2010, 114, 3714–3725; DOI: https://doi.org/10.1021/jp911728e.

    Article  CAS  PubMed  Google Scholar 

  26. F. E. Dickson, C. J. Kunesh, E. L. McGinnis, L. Petrakis, Anal. Chem., 1972, 44, 978–981; DOI: https://doi.org/10.1021/ac60314a009.

    Article  CAS  Google Scholar 

  27. S. Asaoka, S. Nakata, Y. Shiroto, C. Takeuchi, Ind. Eng. Chem. Process Des. Dev., 1983, 22, 242–248; DOI: https://doi.org/10.1021/i200021a013.

    Article  CAS  Google Scholar 

  28. J. G. Reynolds, E. J. Gallegos, R. H. Fish, J. J. Komlenic, Energy Fuels, 1987, 1, 36–44; DOI: https://doi.org/10.1021/ef00001a007.

    Article  CAS  Google Scholar 

  29. B. Silbernagel, J. Catal., 1979, 56, 315–320; DOI: https://doi.org/10.1016/0021-9517(79)90124-6.

    Article  CAS  Google Scholar 

  30. S. Asaoka, S. Nakata, Y. Shiroto, C. Takeuchi, Characteristics of Vanadium Complexes in Petroleum Before and After Hydrotreating, in: R. H. Filby, J. F. Branthaver (Eds.), Met. Complexes Foss. Fuels, Am. Chem. Soc., Washington, 1987, 275–289; DOI: https://doi.org/10.1021/bk-1987-0344.ch018.

  31. D. Lee, K.-D. Kim, Y.-K. Lee, Fuel, 2020, 263, 116620; DOI: https://doi.org/10.1016/j.fuel.2019.116620.

    Article  CAS  Google Scholar 

  32. K. P. Callahan, P. J. Durand, P. H. Rieger, J. Chem. Soc. Chem. Commun., 1980, 75–76; DOI: https://doi.org/10.1039/C39800000075.

  33. K. P. Callahan, P. J. Durand, Inorg. Chem., 1980, 19, 3211–3217; DOI: https://doi.org/10.1021/ic50213a002.

    Article  CAS  Google Scholar 

  34. J. K. Money, J. C. Huffman, G. Christou, Inorg. Chem., 1985, 24, 3297–3302; DOI: https://doi.org/10.1021/ic00214a040.

    Article  CAS  Google Scholar 

  35. Y. Do, E. D. Simhon, R. H. Holm, Inorg. Chem., 1983, 22, 3809–3812; DOI: https://doi.org/10.1021/ic00167a027.

    Article  CAS  Google Scholar 

  36. J.-L. Poncet, R. Guilard, P. Friant, J. Goulon, Polyhedron, 1983, 2, 417–419; DOI: https://doi.org/10.1016/S0277-5387(00)83940-6.

    Article  CAS  Google Scholar 

  37. J. L. Poncet, R. G. Guilard, P. Friant, C. Goulon-Ginet, J. Goulon, Nouv. J. Chim., 1984, 8, 583–590.

    CAS  Google Scholar 

  38. S. Patchkovskii, T. Ziegler, J. Am. Chem. Soc., 2000, 122, 3506–3516; DOI: https://doi.org/10.1021/ja994041a.

    Article  CAS  Google Scholar 

  39. M. F. Ruiz-Lopez, D. Rinaldi, C. Esselin, J. Goulon, J. L. Poncet, R. Guilard, J. Phys. Colloq., 1986, 47, 637–640; DOI: https://doi.org/10.1051/jphyscol:19868120.

    Article  Google Scholar 

  40. J. G. Reynolds, W. R. Biggs, J. C. Fetzer, Liq. Fuels Technol., 1985, 3, 423–448; DOI: https://doi.org/10.1080/07377268508915395.

    Article  CAS  Google Scholar 

  41. J. G. Reynolds, Liq. Fuels Technol., 1985, 3, 73–105; DOI: https://doi.org/10.1080/07377268508915372.

    Article  CAS  Google Scholar 

  42. C. M. Guzy, J. B. Raynor, M. C. R. Symons, J. Chem. Soc. A Inorganic, Phys. Theor., 1969, 2791–2795; DOI: https://doi.org/10.1039/j19690002791.

  43. L. J. Boucher, E. C. Tynan, T. F. Yen, Spectral properties of oxovanadium(IV) complexes. IV. Correlation of ESR spectra with ligand type, in: Electron Spin Reson. Met. Complexes, Springer US, New York, NY, 1969, 111–130; DOI: https://doi.org/10.1007/978-1-4684-8323-9_8.

    Chapter  Google Scholar 

  44. S. N. Truhkan, S. S. Yakushkin, O. N. Martyanov, J. Phys. Chem. C, 2022, 126, 10729–10741; DOI: https://doi.org/10.1021/acs.jpcc.2c01978.

    Article  Google Scholar 

  45. A. E. Sokolov, I. S. Edelman, V. N. Zabluda, E. A. Petrakovskaya, A. S. Aleksandrovskii, A. A. Shubin, S. N. Trukhan, O. N. Mart’yanov, Opt. Spectrosc., 2012, 112, 755–762; DOI: https://doi.org/10.1134/S0030400X12050165.

    Article  CAS  Google Scholar 

  46. S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178, 42–55; DOI: https://doi.org/10.1016/j.jmr.2005.08.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Trukhan or A. M. Chibiryaev.

Additional information

Martyanov Oleg Nikolaevich, born in 1972, Doctor of Chemical Sciences, Professor of the Russian Academy of Sciences, Deputy Director for Research of the Federal State Budgetary Institution of Science “Federal Research Center “Institute of Catalysis named after. G. K. Boreskov”” of the Siberian Branch of the Russian Academy of Sciences, a prominent scientist in the field of physical chemistry and catalysis, author of 279 scientific papers, 4 patents, 2 chapters in monographs, the current Hirsch index is 21 (WoS, Scopus). His main scientific achievements are related to the study of the structure and properties of heterogeneous catalysts and functional materials in order to establish the relationship of their electronic and spatial structure and size characteristics with physicochemical properties, including those at elevated temperatures and pressures in sub- and supercritical media using original physical in situ methods; in particular, original methods of electron spin resonance spectroscopy were developed and tested to study in situ size effects and interparticle interactions in dispersed magnets and catalytic systems based on them; the scientific foundations and methodology for applying a set of complementary physical methods for visualization and in situ study of the stability and physicochemical transformations of heavy components of oils at various spatial and temporal scales have been developed; original approaches to the synthesis of composite catalysts and adsorbents based on a combination of sol-gel methods and SCF technologies have been developed. O. N. Martyanov is a member of the Scientific Councils of the Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences and the Joint Scientific Council of the Siberian Branch of the Russian Academy of Sciences for Chemical Sciences, Deputy Chairman of the Dissertation Council 24.1.222.01 (D 003.012.01) at the Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, a member of the Dissertation Council D 003.051.01 at the Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, a member of the Expert Council of the Russian Science Foundation, a member of the editorial board of the journal “Supercritical Fluids: Theory and Practice”.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 2, pp. 493–499, February, 2023.

No human or animal subjects were used in this research.

The authors declare no competing interests.

This work was performed under financial support of the Russian Science Foundation (Project No. 21-13-00065; https://rscf.ru/project/21-13-00065/).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trukhan, S.N., Chibiryaev, A.M. & Martyanov, O.N. Formation of thiovanadyl porphyrins under a high-temperature treatment of heavy crude oil. Russ Chem Bull 72, 493–499 (2023). https://doi.org/10.1007/s11172-023-3812-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3812-3

Key words

Navigation