Skip to main content
Log in

Prospects for using membrane reactors for hydroformylation

  • Review
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Specific features of using membrane reactors for hydroformylation (oxo-synthesis) were analyzed. The main attention is given to the hydroformylation of olefins with an average chain length (C6–C9), which are important precursors of organic synthesis. The catalysts compatible with the membrane reactor and prospects of using composite polymer and inorganic membranes are considered. A high permeability of the membranes to aldehydes makes it possible to intensify the oxo-synthesis process due to the in situ removal of the reaction product and also to reduce costs of separating a feedstock—product—catalyst mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yu. V. Galkin, A. A. Galkina, D. A. Grushevenko, N. O. Kapustin, E. O. Kozina, V. A. Kulagin, S. I. Mel’nikova, I. Yu. Mironova, I. N. Ovchinnikova, N. D. Troshina, D. D. Yakovleva, Perspektivy razvitiya mirovoi energetiki s uchetom vliyaniya tekhnologicheskogo progressa [Prospects of World Power Engineering Development with Allowance for the Technological Progress Influence], Institute of Energy Studies, Russian Academy of Sciences, Moscow, 2020, 320 pp.; ISBN 978-5-91438-027-1 (in Russian).

    Google Scholar 

  2. A. A. Stepacheva, M. E. Markova, O. V. Manaenkov, A. V. Gavrilenko, A. I. Sidorov, M. G. Sulman, Yu. Yu. Kosivtsov, V. G. Matveeva, E. M. Sulman, Russ. Chem. Bull., 2020, 69, 721–730; DOI: https://doi.org/10.1007/s11172-020-2824-5.

    Article  CAS  Google Scholar 

  3. Y. A. Pokusaeva, A. E. Koklin, O. L. Eliseev, R. V. Kazantsev, V. I. Bogdan, Russ. Chem. Bull., 2020, 69, 237–240; DOI: https://doi.org/10.1007/s11172-020-2751-5.

    Article  CAS  Google Scholar 

  4. S. A. Durakov, P. V. Melnikov, E. M. Martsinkevich, A. A. Smirnova, R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2021, 70, 113–121; DOI: https://doi.org/10.1007/s11172-021-3064-z.

    Article  CAS  Google Scholar 

  5. A. Borner, R. Franke, Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis, John Wiley & Sons, Weinheim, Germany, 2016, Vol. 2, 702 pp.

    Book  Google Scholar 

  6. M. Beller, B. Cornils, C. D. Frohning, C. W. Kohlpaintner, J. Mol. Catal. A Chem., 1995, 104, 17–85; DOI: https://doi.org/10.1016/1381-1169(95)00130-1.

    Article  CAS  Google Scholar 

  7. M. Schrimpf, J. Esteban, T. Rösler, A. J. Vorholt, W. Leitner, Chem. Eng. J., 2019, 372, 917–939; DOI: https://doi.org/10.1016/j.cej.2019.03.133.

    Article  CAS  Google Scholar 

  8. M. Logemann, M. Alders, M. Wist, V. Pyankova, D. Krakau, D. Gottschalk, M. Wessling, J. Membr. Sci., 2020, 615, 118334; DOI: https://doi.org/10.1016/J.MEMSCI.2020.118334.

    Article  CAS  Google Scholar 

  9. H. W. Bohnen, B. Cornils, Adv. Catal., 2002, 47, 1364; DOI: https://doi.org/10.1016/S0360-0564(02)47005-8.

    Google Scholar 

  10. D. P. Zhuchkov, M. V. Nenasheva, M. V. Terenina, Y. S. Kardasheva, D. N. Gorbunov, E. A. Karakhanov, Petroleum Chemistry, 2021, 61, 1–14; DOI: https://doi.org/10.1134/S0965544121010011.

    Article  CAS  Google Scholar 

  11. D. N. Gorbunov, M. V. Nenasheva, Y. S. Kardasheva, E. A. Karakhanov, Russ. Chem. Bull., 2020, 69, 625–634; DOI: https://doi.org/10.1007/s11172-020-2810-y.

    Article  CAS  Google Scholar 

  12. W. Ren, W. Chang, J. Dai, Y. Shi, J. Li, Y. Shi, J. Am. Chem. Soc., 2016, 138, 14864–14867; DOI: https://doi.org/10.1021/jacs.6b10297.

    Article  CAS  PubMed  Google Scholar 

  13. G. Jemier, E. M. Nahmed, S. Libs-Konrath, J. Mol. Catal. A Chem., 1991, 64, 337–347; DOI: https://doi.org/10.1016/0304-5102(91)85142-O.

    Article  Google Scholar 

  14. D. Gorbunov, M. Nenasheva, M. Terenina, Y. Kardasheva, A. Maksimov, E. Karakhanov, ChemistrySelect, 2020, 5, 6407–6414; DOI: https://doi.org/10.1002/slct.202001327.

    Article  CAS  Google Scholar 

  15. D. N. Gorbunov, M. V. Nenasheva, M. V. Terenina, Yu. S. Kardasheva, S. V. Kardashev, E. R. Naranov, A. L. Bugaev, A. V. Soldatov, A. L. Maximov, E. A. Karakhanov, Petroleum Chemistry, 2022, 62, 1–39; DOI: https://doi.org/10.1134/S0965544122010054.

    Article  CAS  Google Scholar 

  16. L. Wu, Q. Liu, R. Jackstell, M. Beller, Angew. Chem., Int. Ed., 2014, 53, 6310–6320; DOI: https://doi.org/10.1002/anie.201400793.

    Article  CAS  Google Scholar 

  17. P. W. N. M. van Leeuwen, N. D. Clément, M. J. L. Tschan, Coord. Chem. Rev., 2011, 255, 1499–1517; DOI: https://doi.org/10.1016/J.CCR.2010.10.009.

    Article  CAS  Google Scholar 

  18. R. Franke, D. Selent, A. Börner, Chem. Rev., 2012, 112, 5675–5732; DOI: https://doi.org/10.1021/cr3001803.

    Article  CAS  PubMed  Google Scholar 

  19. D. Commereuc, J. Andrews, Y. Chauvin, J. Gillard, J. Leonard, Hydrocarb. Process., 1984, 34, 118.

    Google Scholar 

  20. D. N. Gorbunov, A. V. Volkov, Yu. S. Kardasheva, A. L. Maksimov, E. A. Karakhanov, Petroleum Chemisrty, 2015, 55, 587–603; DOI: https://doi.org/10.1134/S0965544115080046.

    Article  CAS  Google Scholar 

  21. V. Yu. Gankin, G. S. Gurevich, Tekhnologiya oksosinteza [Oxo-Synthesis Technology], Khimiya, Leningrad, 1981, 272 pp. (in Russian).

    Google Scholar 

  22. F. Hebrard, P. Kalck, Chem. Rev., 2009, 109, 4272–4282; DOI: https://doi.org/10.1021/cr8002533.

    Article  CAS  PubMed  Google Scholar 

  23. R. Tudor, M. Ashley, Platin. Met. Rev., 2007, 51, 116–126; DOI: https://doi.org/10.1595/147106707X216855.

    Article  CAS  Google Scholar 

  24. B. R. Tudor, M. Ashley, Platin. Met. Rev., 2007, 51, 164–171; DOI: https://doi.org/10.1595/147106707X238211.

    Article  CAS  Google Scholar 

  25. A. Behr, P. Neubert, Applied Homogeneous Catalysis, John Wiley & Sons, Weinheim, Germany, 2012, 688 pp.

    Google Scholar 

  26. J. T. Carlock, Tetrahedron, 1984, 40, 185–187; DOI: https://doi.org/10.1016/0040-4020(84)85118-2.

    Article  CAS  Google Scholar 

  27. T. Mizoroki, M. Kioka, M. Suzuki, S. Sakatani, A. Okumura, K. Maruya, Bull. Chem. Soc. Jpn, 1984, 57, 577–578; DOI: https://doi.org/10.1246/bcsj.57.577.

    Article  CAS  Google Scholar 

  28. A. Thomas, in Catalysis of Organic Reactions, Ed. S. R. Schmidt, CRC Press, Boca Raton, 2006, p. 8.

  29. L. Kollár, G. Keglevich, Chem. Rev., 2010, 110, 4257–4302; DOI: https://doi.org/10.1021/cr900364c.

    Article  PubMed  Google Scholar 

  30. M. L. Green, C. McMullin, G. J. P. Morton, A. Guy Orpen, D. F. Wass, R. L. Wingad, Organometallics, 2009, 28, 1476–1479; DOI: https://doi.org/10.1021/om801031a.

    Article  CAS  Google Scholar 

  31. S. Dastgir, K. S. Coleman, M. L. H. Green, Dalton Trans., 2011, 40, 661; DOI: https://doi.org/10.1039/c0dt00760a.

    Article  CAS  PubMed  Google Scholar 

  32. P. W. N. M. van Leeuwen, C. F. Roobeek, J. Organomet. Chem., 1983, 258, 343–350; DOI: https://doi.org/10.1016/S0022-328X(00)99279-9.

    Article  CAS  Google Scholar 

  33. K. McBride, N. M. Kaiser, K. Sundmacher, Comput. Chem. Eng., 2017, 105, 212–223; DOI: https://doi.org/10.1016/J.COMPCHEMENG.2016.11.019.

    Article  CAS  Google Scholar 

  34. J. Zhao, J. Yi, C. Yang, K. Wan, X. Duan, S. Tang, H. Fu, X. Zheng, M. Yuan, R. Li, H. Chen, K. Wan, X. Duan, S. Tang, H. Chen, J. Zhao, Catal. Lett., 2021, 1273–1281; DOI: https://doi.org/10.1007/s10562-020-03385-8.

  35. A. V. Volkov, G. F. Tereshchenko, G. A. Korneeva, Russ. Chem. Rev., 2008, 77, 983–993; DOI: https://doi.org/10.1070/RC2008v077n11ABEH003795.

    Article  CAS  Google Scholar 

  36. M. Priske, K. D. Wiese, A. Drews, M. Kraume, G. Baumgarten, J. Membr. Sci., 2010, 360, 77–83; DOI: https://doi.org/10.1016/J.MEMSCI.2010.05.002.

    Article  CAS  Google Scholar 

  37. RF Patent No. 2638661; Byul. Izobret. [Invention Bulletin], 2016, 31 (in Russian).

  38. V. Udayakumar, S. Alexander, V. Gayathri, Shivakumaraiah, K. R. Patil, B. Viswanathan, J. Mol. Catal. A Chem., 2010, 317, 111–117; DOI: https://doi.org/10.1016/J.MOLCATA.2009.10.030.

    Article  CAS  Google Scholar 

  39. M. A. Goni, E. Rosenberg, S. Meregude, G. Abbott, J. Organomet. Chem., 2016, 807, 1–10; DOI: https://doi.org/10.1016/J.JORGANCHEM.2016.01.032.

    Article  Google Scholar 

  40. D. Gorbunov, D. Safronova, Y. Kardasheva, A. Maximov, ACS Appl. Mater. Interfaces, 2018, 10, 26566–26575; DOI: https://doi.org/10.1021/acsami.8b02797.

    Article  CAS  PubMed  Google Scholar 

  41. J. M. Marinkovic, A. Riisager, R. Franke, P. Wasserscheid, M. Haumann, Ind. Eng. Chem. Res., 2019, 58, 2409–2420; DOI: https://doi.org/10.1021/acs.iecr.8b04010.

    Article  CAS  Google Scholar 

  42. G. E. Oosterom, S. Steffens, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen, Top. Catal., 2002, 19, 61–73; DOI: https://doi.org/10.1023/A:1013833316453.

    Article  CAS  Google Scholar 

  43. A. Weiß, M. Giese, M. Lijewski, R. Franke, P. Wasserscheid, M. Haumann, Catal. Sci. Technol., 2017, 7, 5562; DOI: https://doi.org/10.1039/c7cy01346a.

    Article  Google Scholar 

  44. X. Li, Y. Zhang, M. Meng, G. Yang, X. San, M. Takahashi, N. Tsubaki, J. Membr. Sci., 2010, 347, 220–227; DOI: https://doi.org/10.1016/J.MEMSCI.2009.10.027.

    Article  CAS  Google Scholar 

  45. M. Logemann, J.M. Marinkovic, M. Schörner, E. José García-Suárez, C. Hecht, R. Franke, M. Wessling, A. Riisager, R. Fehrmann, M. Haumann, Green Chem., 2020, 22, 5691–5700; DOI: https://doi.org/10.1039/D0GC01483D.

    Article  CAS  Google Scholar 

  46. B. Cornils, W. A. Herrmann, R. W. Eckl, J. Mol. Catal. A Chem., 1997, 116, 27–33; DOI: https://doi.org/10.1016/S1381-1169(96)00073-8.

    Article  CAS  Google Scholar 

  47. D. N. Gorbunov, M. V. Nenasheva, R. P. Matsukevich, M. V. Terenina, F. N. Putilin, Yu. S. Kardasheva, A. L. Maximov, E. A. Karahanov, Petroleym Chemistry, 2019, 59, 1009–1016; DOI: https://doi.org/10.1134/S0965544119090056.

    Article  CAS  Google Scholar 

  48. Z. Rizki, A. E. Janssen, A. van der Padt, R. M. Boom, Sep. Purif. Technol., 2021, 259, 118094; DOI: https://doi.org/10.1016/j.seppur.2017.12.031.

    Article  CAS  Google Scholar 

  49. A. A. Kossov, A. A. Yushkin, V. S. Khotimskiy, A. V. Volkov, Petroleum Chemistry, 2015, 55, 783–790; DOI: https://doi.org/10.1134/S0965544115100084.

    Article  CAS  Google Scholar 

  50. Z. Xie, J. Fang, B. Subramaniam, S. K. Maiti, W. Snavely, J. A. Tunge, AIChE J., 2013, 59, 4287–4296; DOI: https://doi.org/10.1002/aic.14142.

    Article  CAS  Google Scholar 

  51. J. Fang, R. Jana, J. A. Tunge, B. Subramaniam, Appl. Catal. A General, 2011, 393, 294–301; DOI: https://doi.org/10.1016/J.APCATA.2010.12.011.

    Article  CAS  Google Scholar 

  52. A. Lejeune, M. Rabiller-Baudry, T. Renouard, Sep. Purif. Technol., 2018, 195, 339–357; DOI: https://doi.org/10.1016/j.seppur.2017.12.031.

    Article  CAS  Google Scholar 

  53. N. A. Drigo, A. N. Gorbunov, D. N. Gorbunov, M. Y. Talanova, Y. S. Kardasheva, V. V. Kovalev, A. L. Maximov, I. M. Vatsouro, Chem. Heterocycl. Compd., 2016, 52, 1042–1053; DOI: https://doi.org/10.1007/s10593-017-2005-0.

    Article  CAS  Google Scholar 

  54. S. Siangwata, N. C. Breckwoldt, N. J. Goosen, G. S. Smith, Appl. Catal. A, 2019, 585, 117179; DOI: https://doi.org/10.1016/j.apcata.2019.117179.

    Article  CAS  Google Scholar 

  55. E. A. Leushina, D. N. Gorbunov, D. A. Cheshkov, T. S. Kuchinskaya, A. V. Anisimov, A. L. Maksimov, M. V. Terenina, A. V. Khoroshutin, E. A. Karakhanov, Russ. J. Org. Chem., 2016, 52, 1625–1631; DOI: https://doi.org/10.1134/S1070428016110130.

    Article  CAS  Google Scholar 

  56. A. Basile, A. Iulianelli, S. Liguori, in Integrated Membrane Systems and Processes, Eds A. Basile, C. Charcosset, John Wiley & Sons, Weinheim, Germany, 2016, pp. 231–254.

  57. G. Saracco, V. Specchia, Catal. Rev.-Sci. Eng., 1994, 36, 305–384; DOI: https://doi.org/10.1080/01614949408013927.

    Article  CAS  Google Scholar 

  58. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, I. Pinnau, J. Polym. Sci. B Polym. Phys., 2000, 38, 415–434; DOI: https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z.

    Article  CAS  Google Scholar 

  59. R. S. Prabhakar, R. Raharjo, L. G. Toy, H. Lin, B. D. Freeman, Ind. Eng. Chem. Res., 2005, 44, 1547–1556; DOI: https://doi.org/10.1021/ie0492909.

    Article  CAS  Google Scholar 

  60. D. Lin, Z. Ding, L. Liu, R. Ma, Chem. Eng. Res. Des., 2012, 90, 2023–2033; DOI: https://doi.org/10.1016/J.CHERD.2012.03.007.

    Article  CAS  Google Scholar 

  61. D. Paul, Y. P. Yampolskii, Polymeric Gas Separation Membranes, CRC Press, Boca Raton, 1994, 635 pp.

    Google Scholar 

  62. A. Javaid, Chem. Eng. J., 2005, 112, 219–226; DOI: https://doi.org/10.1016/J.CEJ.2005.07.010.

    Article  CAS  Google Scholar 

  63. P. Bernardo, E. Drioli, G. Golemme, Ind. Eng. Chem. Res., 2009, 48, 4638–4663; DOI: https://doi.org/10.1021/ie8019032.

    Article  CAS  Google Scholar 

  64. T. C. Merkel, R. P. Gupta, B. S. Turk, B. D. Freeman, J. Membr. Sci., 2001, 191, 85–94; DOI: https://doi.org/10.1016/S0376-7388(01)00452-5.

    Article  CAS  Google Scholar 

  65. D. A. Syrtsova, M. S. Piskarev, A. V. Zinoviev, A. A. Kuznetsov, V. V. Teplyakov, Russ. Chem. Bull., 2020, 69, 819–821; DOI: https://doi.org/10.1007/s11172-020-2838-z.

    Article  CAS  Google Scholar 

  66. Y. V. Kulvelis, O. N. Primachenko, I. V. Gofman, A. S. Odinokov, A. V. Shvidchenko, E. B. Yudina, E. A. Marinenko, V. T. Lebedev, A. Y. Vul, Russ. Chem. Bull., 2021, 70, 1713–1717; DOI: https://doi.org/10.1007/s11172-021-3274-4.

    Article  CAS  Google Scholar 

  67. I. Borisov, A. Ovcharova, D. Bakhtin, S. Bazhenov, A. Volkov, R. Ibragimov, G. Bondarenko, R. Mozhchil, A. Bildyukevich, V. Volkov, Fibers, 2017, 5, 6; DOI: https://doi.org/10.3390/fib5010006.

    Article  Google Scholar 

  68. R. S. Borisov, V. S. Khotimsky, A. I. Rebrov, S. V. Rykov, D. I. Slovetsky, Y. M. Pashunin, J. Membr. Sci., 1997, 125, 319–329; DOI: https://doi.org/10.1016/S0376-7388(96)00254-2.

    Article  CAS  Google Scholar 

  69. E. A. Grushevenko, I. L. Borisov, A. V. Volkov, Petroleum Chemistry, 2021, 61, 959–976; DOI: https://doi.org/10.1134/S0965544121090103.

    Article  CAS  Google Scholar 

  70. I. Pinnau, Z. He, J. Membr. Sci., 2004, 244, 227–233; DOI: J.MEMSCI.2004.06.055.

    Article  CAS  Google Scholar 

  71. I. de Bo, H. van Langenhove, P. Pruuost, J. de Neve, J. Pieters, I. F. J. Vankelecom, E. Dick, J. Membr. Sci., 2003, 215, 303–319; DOI: https://doi.org/10.1016/S0376-7388(03)00024-3.

    Article  CAS  Google Scholar 

  72. X. Jiang, A. Kumar, J. Membr. Sci., 2005, 254, 179–188; DOI: https://doi.org/10.1016/J.MEMSCI.2004.12.041.

    Article  CAS  Google Scholar 

  73. V. V. Zhmakin, V. V. Teplyakov, Sep. Purif. Technol., 2017, 186, 145–155; DOI: https://doi.org/10.1016/J.SEPPUR.2017.06.004.

    Article  CAS  Google Scholar 

  74. S. H. Choi, J. H. Kim, S. B. Lee, J. Membr. Sci., 2007, 299, 54–62; DOI: https://doi.org/10.1016/J.MEMSCI.2007.04.022.

    Article  CAS  Google Scholar 

  75. M. Catarino, A. Ferreira, A. Mendes, J. Membr. Sci., 2009, 341, 51–59; DOI: https://doi.org/10.1016/J.MEMSCI.2009.05.038.

    Article  CAS  Google Scholar 

  76. J. Börjesson, H. O. E. Karlsson, G. Trägårdh, J. Membr. Sci., 1996, 119, 229–239; DOI: https://doi.org/10.1016/0376-7388(96)00123-8.

    Article  Google Scholar 

  77. J. Olsson, G. Trägårdh, F. Lipnizki, Sep. Sci. Technol., 2002, 37, 1199–1223; DOI: https://doi.org/10.1081/SS-120002607.

    Article  CAS  Google Scholar 

  78. A. Raisi, A. Aroujalian, T. Kaghazchi, J. Membr. Sci., 2008, 322, 339–348; DOI: https://doi.org/10.1016/J.MEMSCI.2008.06.001.

    Article  CAS  Google Scholar 

  79. D. M. Kanani, B. P. Nikhade, P. Balakrishnan, G. Singh, V. G. Pangarkar, Ind. Eng. Chem. Res., 2003, 42, 6924–6932; DOI: https://doi.org/10.1021/ie0340185.

    Article  CAS  Google Scholar 

  80. M. Bennett, B. J. Brisdon, R. England, R. W. Field, J. Membr. Sci., 1997, 137, 63–88; DOI: https://doi.org/10.1016/S0376-7388(97)00183-X.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Grushevenko or A. V. Volkov.

Additional information

Aleksei Vladimirovich Volkov, born 1979, Doctor of Sciences in Chemistry, Vice-Director of the A. V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences (TIPS of RAS), elected Professor of RAS in 2022. A. V. Volkov is a specialist in the field of membranes, membrane technologies, gas separation, liquid separation, water refining, polymers, polymer materials, decarbonization, and hydrogen. He developed hollow fiber and flat sheet membranes with the controlled pore structure based on polyimides, polysulfones, and copolymers of polyacrylonitrile and other polymers, highly selective polysiloxane membranes for gas and liquid separation; membrane and membrane modules for hydrogen and CO2 generation; and express methods for studying polymer solutions in order to work out conditions of membrane molding. A. V. Volkov published 170 works and trained seven candidates of sciences. He is engaged in practical works and supervises research projects of pupils from Moscow schools. A. V. Volkov is a member of the European Membrane Society (EMS), World Association of Membrane Societies (WA-MS), D. I. Mendeleev Russian Chemical Society, and Scientific Council of TIPS of RAS; editorial boards of scientific journals Membrany i Membrannye Tekhnologii [Membranes and Membrane Technologies] and Journal of Membrane Science and Research; and an invited editor of the Membranes and Materials journals. A. V. Volkov was awarded with the medal “For Contribution to Realization of State Politics in Area of Scientific Technological Development” (2021) and prizes of the Moscow Government to Young Scientists (2018), International Academic Publishing Company (IAPC) NAUKA/INTERPERIODICA for the cycle of published works (2016), and European Membrane Society for the best oral report “Permea 2007.” He is a laureate of the Foundation for Assistance of Domestic Science in the nomination “Candidates of Sciences of RAS” (2008) and a scholar of the Dutch Government “Huygens” for a period of training (2002).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 2, pp. 393–403, February, 2023.

No human or animal subjects were used in this research.

The authors declare no competing interests.

This work was financially supported by the Russian Science Foundation (Project No. 21-79-00223, https://rscf.ru/project/21-79-00223/).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grushevenko, E.A., Petrova, I.V., Volkov, V.V. et al. Prospects for using membrane reactors for hydroformylation. Russ Chem Bull 72, 393–403 (2023). https://doi.org/10.1007/s11172-023-3807-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3807-7

Key words

Navigation