Skip to main content
Log in

EPR spectroscopy of functional nanostructures: new targeted approaches and applications

  • Review
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Electron paramagnetic resonance (EPR) spectroscopy allows one to study the magnetic, structural, and functional properties of nanostructures and nanomaterials. However, an increase in informativity of the method to solve particular problems requires the development of original targeted approaches and methods. The review presents the main results in this direction obtained in the last decade at the International Tomography Center of the Siberian Branch of the Russian Academy of Sciences using several classes of objects. In particular, the methodology and application of EPR spectroscopy in the field of molecular magnetism and the functional properties of porous metal-organic coordination polymers, as well as methods for studying nanostructuring in ionic liquid glasses and in composite nanomaterials with their participation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. E. Wertz, J. R. Bolton, Electron Spin Resonance: Elementary Theory and Practical Applications, Springer, 1986, 498 pp.

  2. S. A. Dzyuba, Osnovy magnitnogo rezonansa [Magnetic Resonance: The Basics], Novosibirsk Gos. Univ., Novosibirsk, 2021, 364 pp. (in Russian).

    Google Scholar 

  3. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance, Oxford University Press, 2001, 578 pp.

  4. O. Kahn, Molecular Magnetism, VCH, New York, 1993, 380 pp.

    Google Scholar 

  5. Molecular Magnetism from Molecular Assemblies to the Devices, NATO ASI Series, E: Applied Sciences, Vol. 321, Eds E. Coronado, P. Delhaès, D. Gatteschi, J. S. Miller, Kluwer Academic Publisher, Dordrecht, 1996, 604 pp.

    Google Scholar 

  6. Spin Crossover in Transition Metal Compounds, Topics in Current Chemistry, Vol. I–III, Eds P. Gutlich and H. A. Goodwin, Springer-Verlag, Berlin—Heidelberg—NewYork, 2004, p. 233.

    Google Scholar 

  7. Spin-Crossover Materials: Properties and Applications, Ed. M. A. Halcrow, John Wiley & Sons, Oxford, 2013, 576 pp.

    Google Scholar 

  8. A. Bousseksou, G. Molnár, L. Salmon, W. Nicolazzi, Chem. Soc. Rev., 2011, 40, 3313; DOI: https://doi.org/10.1039/C1CS15042A.

    Article  CAS  PubMed  Google Scholar 

  9. V. I. Ovcharenko, S. V. Fokin, G. V. Romanenko, Yu. G. Shvedenkov, V. N. Ikorskii, E. V. Tretyakov, S. F. Vasilevskii, J. Struct. Chem., 2002, 43, 153; DOI: https://doi.org/10.1023/A:1016094421024.

    Article  CAS  Google Scholar 

  10. V. I. Ovcharenko, S. V. Fokin, G. V. Romanenko, V. N. Ikorskii, E. V. Tretyakov, S. F. Vasilevsky, R. Z. Sagdeev, Mol. Phys., 2002, 100, 1107; DOI: https://doi.org/10.1080/00268970110109510.

    Article  CAS  Google Scholar 

  11. V. I. Ovcharenko, K. Yu. Maryunina, S. V. Fokin, E. V. Tretyakov, G. V. Romanenko, V. N. Ikorskii, Russ. Chem. Bull., 2004, 53, 2406; DOI: https://doi.org/10.1007/s11172-005-0136-4.

    Article  CAS  Google Scholar 

  12. V. I. Ovcharenko, E. G. Bagryanskaya, in Spin-Crossover Materials: Properties and Applications, Ed. M. A. Halcrow, John Wiley & Sons, 2013, p. 239.

  13. M. V. Fedin, S. L. Veber, I. A. Gromov, V. I. Ovcharenko, R. Z. Sagdeev, A. Schweiger, E. G. Bagryanskaya, J. Phys. Chem. A, 2006, 110, 2315; DOI: https://doi.org/10.1021/jp0573792.

    Article  CAS  PubMed  Google Scholar 

  14. M. V. Fedin, S. L. Veber, I. A. Gromov, V. I. Ovcharenko, R. Z. Sagdeev, E. G. Bagryanskaya, J. Phys. Chem. A, 2007, 111, 4449; DOI: https://doi.org/10.1021/jp068585s.

    Article  CAS  PubMed  Google Scholar 

  15. M. V. Fedin, S. L. Veber, I. A. Gromov, K. Yu. Maryunina, S. V. Fokin, G. V. Romanenko, V. I. Ovcharenko, R. Z. Sagdeev, E. G. Bagryanskaya, Inorg. Chem., 2007, 46, 11405; DOI: https://doi.org/10.1021/ic7014385.

    Article  CAS  PubMed  Google Scholar 

  16. E. V. Tretyakov, S. E. Tolstikov, E. V. Gorelik, M. V. Fedin, G. V. Romanenko, A. S. Bogomyakov, V. I. Ovcharenko, Polyhedron, 2008, 27, 739; DOI: https://doi.org/10.1016/j.poly.2007.11.003.

    Article  CAS  Google Scholar 

  17. S. L. Veber, M. V. Fedin, A. I. Potapov, K. Yu. Maryunina, G. V. Romanenko, R. Z. Sagdeev, V. I. Ovcharenko, D. Goldfarb, E. G. Bagryanskaya, J. Am. Chem. Soc., 2008, 130, 2444; DOI: https://doi.org/10.1021/ja710773u.

    Article  CAS  PubMed  Google Scholar 

  18. S. L. Veber, M. V. Fedin, K. Yu. Maryunina, G. V. Romanenko, R. Z. Sagdeev, E. G. Bagryanskaya, V. I. Ovcharenko, Inorg. Chim. Acta, 2008, 361, 4148; DOI: https://doi.org/10.1016/j.ica.2008.03.126.

    Article  CAS  Google Scholar 

  19. M. Fedin, V. Ovcharenko, R. Sagdeev, E. Reijerse, W. Lubitz, E. Bagryanskaya, Angew. Chem., Int. Ed., 2008, 47, 6897; DOI: https://doi.org/10.1002/anie.200801400.

    Article  CAS  Google Scholar 

  20. M. V. Fedin, S. L. Veber, G. V. Romanenko, V. I. Ovcharenko, R. Z. Sagdeev, G. Klihm, E. Reijerse, W. Lubitz, E. G. Bagryanskaya, Phys. Chem. Chem. Phys., 2009, 11, 6654; DOI: https://doi.org/10.1039/b906007c.

    Article  CAS  PubMed  Google Scholar 

  21. M. V. Fedin, S. L. Veber, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, Russ. Chem. Bull., 2010, 59, 1065; DOI: https://doi.org/10.1007/s11172-010-0209-x.

    Article  CAS  Google Scholar 

  22. M. V. Fedin, S. L. Veber, K. Yu. Maryunina, G. V. Romanenko, E. A. Suturina, N. P. Gritsan, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, J. Am. Chem. Soc., 2010, 132, 13886; DOI: https://doi.org/10.1021/ja105862w.

    Article  CAS  PubMed  Google Scholar 

  23. O. N. Chupakhin, E. V. Tretyakov, I. A. Utepova, M. V. Varaksin, G. V. Romanenko, A. S. Bogomyakov, S. L. Veber, V. I. Ovcharenko, Polyhedron, 2011, 30, 647; DOI: https://doi.org/10.1016/j.poly.2010.11.029.

    Article  CAS  Google Scholar 

  24. M. V. Fedin, I. Yu. Drozdyuk, E. V. Tretyakov, S. E. Tolstikov, V. I. Ovcharenko, E. G. Bagryanskaya, Appl. Magn. Reson., 2011, 41, 383; DOI: https://doi.org/10.1007/s00723-011-0249-x.

    Article  CAS  Google Scholar 

  25. S. L. Veber, M. V. Fedin, K. Yu. Maryunina, A. Potapov, D. Goldfarb, E. Reijerse, W. Lubitz, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, Inorg. Chem., 2011, 50, 10204; DOI: https://doi.org/10.1021/ic2011869.

    Article  CAS  PubMed  Google Scholar 

  26. M. V. Fedin, K. Yu. Maryunina, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, Inorg. Chem., 2012, 51, 709; DOI: https://doi.org/10.1021/ic202248v.

    Article  CAS  PubMed  Google Scholar 

  27. E. V. Tretyakov, S. E. Tolstikov, A. O. Suvorova, A. V. Polushkin, G. V. Romanenko, A. S. Bogomyakov, S. L. Veber, M. V. Fedin, D. V. Stass, E. Reijerse, W. Lubitz, E. M. Zueva, V. I. Ovcharenko, Inorg. Chem., 2012, 51, 9385; DOI: https://doi.org/10.1021/ic301149e.

    Article  CAS  Google Scholar 

  28. M. V. Fedin, E. G. Bagryanskaya, H. Matsuoka, S. Yamauchi, S. L. Veber, K. Yu. Maryunina, E. V. Tretyakov, V. I. Ovcharenko, R. Z. Sagdeev, J. Am. Chem. Soc., 2012, 134, 16319; DOI: https://doi.org/10.1021/ja306467e.

    Article  CAS  PubMed  Google Scholar 

  29. I. Yu. Drozdyuk, S. E. Tolstikov, E. V. Tretyakov, S. L. Veber, V. I. Ovcharenko, R. Z. Sagdeev, E. G. Bagryanskaya, M. V. Fedin, J. Phys. Chem. A, 2013, 117, 6483; DOI: https://doi.org/10.1021/jp403977n.

    Article  CAS  PubMed  Google Scholar 

  30. I. Yu. Drozdyuk, K. Yu. Maryunina, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, M. V. Fedin, Mol. Phys., 2013, 111, 2903; DOI: https://doi.org/10.1080/00268976.2013.793848.

    Article  CAS  Google Scholar 

  31. I. Yu. Barskaya, E. V. Tretyakov, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, K. Yu. Maryunina, T. Takui, K. Sato, M. V. Fedin, J. Am. Chem. Soc., 2014, 136, 10132; DOI: https://doi.org/10.1021/ja504774q.

    Article  CAS  PubMed  Google Scholar 

  32. E. V. Tretyakov, G. V. Romanenko, S. L. Veber, M. V. Fedin, A. V. Polushkin, A. O. Tkacheva, V. I. Ovcharenko, Aust. J. Chem., 2015, 68, 970; DOI: https://doi.org/10.1071/CH14422.

    Article  CAS  Google Scholar 

  33. S. E. Tolstikov, N. A. Artiukhova, G. V. Romanenko, A. S. Bogomyakov, E. M. Zueva, I. Yu. Barskaya, M. V. Fedin, K. Yu. Maryunina, E. V. Tretyakov, R. Z. Sagdeev, V. I. Ovcharenko, Polyhedron, 2015, 100, 132; DOI: https://doi.org/10.1016/j.poly.2015.07.029.

    Article  CAS  Google Scholar 

  34. M. V. Fedin, S. L. Veber, E. G. Bagryanskaya, G. V. Romanenko, V. I. Ovcharenko, Dalton Trans., 2015, 44, 18823; DOI: https://doi.org/10.1039/c5dt03441h.

    Article  CAS  PubMed  Google Scholar 

  35. I. Yu. Barskaya, S. L. Veber, S. V. Fokin, E. V. Tretyakov, E. G. Bagryanskaya, V. I. Ovcharenko, M. V. Fedin, Dalton Trans., 2015, 44, 20883; DOI: https://doi.org/10.1039/c5dt03683f.

    Article  CAS  PubMed  Google Scholar 

  36. M. V. Fedin, S. L. Veber, E. G. Bagryanskaya, V. I. Ovcharenko, Coord. Chem. Rev., 2015, 289–290, 341; DOI: https://doi.org/10.1016/j.ccr.2014.11.015.

    Article  Google Scholar 

  37. N. A. Artiukhova, G. V. Romanenko, A. S. Bogomyakov, I. Yu. Barskaya, S. L. Veber, M. V. Fedin, K. Yu. Maryunina, K. Inoue, V. I. Ovcharenko, J. Mater. Chem. C, 2016, 4, 11157; DOI: https://doi.org/10.1039/C6TC03216H.

    Article  CAS  Google Scholar 

  38. S. V. Tumanov, S. L. Veber, S. E. Tolstikov, N. A. Artiukhova, G. V. Romanenko, V. I. Ovcharenko, M. V. Fedin, Inorg. Chem., 2017, 56, 11729; DOI: https://doi.org/10.1021/acs.inorgchem.7b01689.

    Article  CAS  PubMed  Google Scholar 

  39. S. L. Veber, S. V. Tumanov, E. Yu. Fursova, O. A. Shevchenko, Y. V. Getmanov, M. A. Scheglov, V. V. Kubarev, D. A. Shevchenko, I. I. Gorbachev, T. V. Salikova, G. N. Kulipanov, V. I. Ovcharenko, M. V. Fedin, J. Magn. Reson., 2018, 288, 11; DOI: https://doi.org/10.1016/j.jmr.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  40. V. Ovcharenko, G. Romanenko, A. Polushkin, G. Letyagin, A. Bogomyakov, M. Fedin, K. Maryunina, S. Nishihara, K. Inoue, M. Petrova, V. Morozov, E. Zueva, Inorg. Chem., 2019, 58, 9187; DOI: https://doi.org/10.1021/acs.inorgchem.9b00815.

    Article  CAS  PubMed  Google Scholar 

  41. N. Artiukhova, G. Romanenko, G. Letyagin, A. Bogomyakov, S. Veber, O. Minakova, M. Petrova, V. Morozov, V. Ovcharenko, Crystals, 2019, 9, 285; DOI: https://doi.org/10.3390/cryst9060285.

    Article  CAS  Google Scholar 

  42. K. Maryunina, K. Yamaguchi, S. Nishihara, K. Inoue, G. Letyagin, G. Romanenko, I. Barskaya, S. Veber, M. Fedin, A. Bogomyakov, M. Petrova, V. Morozov, V. Ovcharenko, Cryst. Growth Des., 2020, 20, 2796; DOI: https://doi.org/10.1021/acs.cgd.0c00240.

    Article  CAS  Google Scholar 

  43. S. V. Tumanov, S. L. Veber, S. E. Tolstikov, N. A. Artiukhova, V. I. Ovcharenko, M. V. Fedin, Dalton Trans., 2020, 49, 5851; DOI: https://doi.org/10.1039/D0DT00706D.

    Article  CAS  PubMed  Google Scholar 

  44. S. Tolstikov, I. Golomolzina, S. V. Fokin, A. Bogomyakov, V. Morozov, S. Tumanov, O. Minakova, S. Veber, M. V. Fedin, S. A. Gromilov, G. V. Romanenko, V. Ovcharenko, Crystal Growth Des., 2021, 21, 260; DOI: https://doi.org/10.1021/acs.cgd.0c01067.

    Article  CAS  Google Scholar 

  45. C. J. Simmons, H. Stratemeier, G. R. Hanson, M. A. Hitchman, Inorg. Chem., 2005, 44, 2753; DOI: https://doi.org/10.1021/ic048604h.

    Article  CAS  PubMed  Google Scholar 

  46. J. Goslar, M. Wencka, S. Lijewski, S. K. Hoffmann, J. Phys. Chem. Solids, 2006, 67, 2614; DOI: https://doi.org/10.1016/j.jpcs.2006.08.005.

    Article  CAS  Google Scholar 

  47. S. K. Hoffmann, J. Goslar, Acta Phys. Pol. A, 2006, 110, 807; DOI: https://doi.org/10.12693/APhysPolA.110.807.

    Article  CAS  Google Scholar 

  48. S. Decurtins, P. Gütlich, C. P. Kohler, H. Spiering, A. Hauser, Chem. Phys. Lett. 1984, 105, 1; DOI: https://doi.org/10.1016/0009-2614(84)80403-0.

    Article  CAS  Google Scholar 

  49. P. Gülich, A. Hauser, H. Spiering, Angew. Chem., Int. Ed. Engl., 1994, 33, 2024; DOI: https://doi.org/10.1002/anie.199420241.

    Article  Google Scholar 

  50. A. Hauser, Top. Curr. Chem., 2004, 234, 155; DOI: https://doi.org/10.1007/b95416.

    Article  CAS  Google Scholar 

  51. O. Sato, J. Tao, Y.-Z. Zhang, Angew. Chem., Int. Ed., 2007, 46, 2152; DOI: https://doi.org/10.1002/anie.200602205.

    Article  CAS  Google Scholar 

  52. S. L. Veber, E. A. Suturina, M. V. Fedin, K. N. Boldyrev, K. Y. Maryunina, R. Z. Sagdeev, V. I. Ovcharenko, N. P. Gritsan, E. G. Bagryanskaya, Inorg. Chem., 2015, 54, 3446; DOI: https://doi.org/10.1021/ic5031153.

    Article  CAS  PubMed  Google Scholar 

  53. I. Y. Barskaya, S. L. Veber, E. Suturina, P. S. Sherin, K. Yu. Maryunina, N. A. Artiukhova, E. V. Tretyakov, R. Z. Sagdeev, V. I. Ovcharenko, N. P. Gritsan, M. V. Fedin, Dalton Trans., 2017, 46, 13108; DOI: https://doi.org/10.1039/C7DT02719B.

    Article  CAS  PubMed  Google Scholar 

  54. W. Kaszub, A. Marino, M. Lorenc, E. Collet, E. G. Bagryanskaya, E. V. Tretyakov, V. I. Ovcharenko, M. V. Fedin, Angew. Chem., Int. Ed., 2014, 40, 10636; DOI: https://doi.org/10.1002/anie.201403672.

    Article  Google Scholar 

  55. X. Dong, M. Lorenc, E. V. Tretyakov, V. I. Ovcharenko, M. V. Fedin, J. Phys. Chem. Lett., 2017, 8, 5587; DOI: https://doi.org/10.1021/acs.jpclett.7b02497.

    Article  CAS  PubMed  Google Scholar 

  56. S. V. Tumanov, S. L. Veber, S. Greatorex, M. A. Halcrow, M. V. Fedin, Inorg. Chem., 2018, 57, 8709; DOI: https://doi.org/10.1021/acs.inorgchem.8b01096.

    Article  CAS  PubMed  Google Scholar 

  57. A. M. Sheveleva, I. K. Shundrina, S. L. Veber, A. D. Buhtojarova, V. V. Russkih, V. V. Shelkovnikov, M. V. Fedin, E. G. Bagryanskaya, Appl. Magn. Reson., 2015, 46, 523; DOI: https://doi.org/10.1007/s00723-014-0640-5.

    Article  CAS  Google Scholar 

  58. A. M. Sheveleva, M. Yu. Ivanov, I. K. Shundrina, A. D. Bukhtoyarova, E. G. Bagryanskaya, M. V. Fedin, J. Phys. Chem. C, 2016, 120, 14767; DOI: https://doi.org/10.1021/acs.jpcc.6b05016.

    Article  CAS  Google Scholar 

  59. M. Singh, J. W. Naughton, T. Yamashita, H. Nagai, K. Asai, Exp. Fluids, 2011, 50, 701; DOI: https://doi.org/10.1007/s00348-010-0977-y.

    Article  CAS  Google Scholar 

  60. J. H. Bell, E. T. Schairer, L. A. Hand, R. D. Mehta, Annu. Rev. Fluid Mech., 2001, 33, 155; DOI: https://doi.org/10.1146/annurev.fluid.33.1.155.

    Article  Google Scholar 

  61. E. Bordignon, eMag Res, 2017, 6, 235; DOI: https://doi.org/10.1002/9780470034590.emrstm1513.

    Article  CAS  Google Scholar 

  62. H. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev., 2012, 112, 673; DOI: https://doi.org/10.1021/cr300014x.

    Article  CAS  PubMed  Google Scholar 

  63. O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature, 2003, 423, 705; DOI: https://doi.org/10.1038/nature01650.

    Article  CAS  PubMed  Google Scholar 

  64. G. Férey, Chem. Soc. Rev., 2008, 37, 191; DOI: https://doi.org/10.1039/B618320B.

    Article  PubMed  Google Scholar 

  65. M. A. Agafonov, E. V. Alexandrov, N. A. Artyukhova, G. E. Bekmukhamedov, V. A. Blatov, V. V. Butova, Y. M. Gayfulin, A. A. Garibyan, Z. N. Gafurov, Yu. G. Gorbunova, L. G. Gordeeva, M. S. Gruzdev, A. N. Gusev, G. L. Denisov, D. N. Dybtsev, Yu. Yu. Enakieva, A. A. Kagilev, A. O. Kantyukov, M. A. Kiskin, K. A. Kovalenko, A. M. Kolker, D. I. Kolokolov, Y. M. Litvinova, A. A. Lysova, N. V. Maksimchuk, Y. V. Mironov, Yu. V. Nelyubina, V. V. Novikov, V. I. Ovcharenko, A. V. Piskunov, D. M. Polyukhov, V. A. Polyakov, V. G. Ponomareva, A. S. Poryvaev, G. V. Romanenko, A. V. Soldatov, M. V. Solovyeva, A. G. Stepanov, I. V. Terekhova, O. Yu. Trofimova, V. P. Fedin, M. V. Fedin, O. A. Kholdeeva, A. Yu. Tsivadze, U. V. Chervonova, A. I. Cherevko, V. F. Shulgin, E. S. Shutova, D. G. Yakhvarov, J. Struct. Chem., 2022, 63, 671; DOI: https://doi.org/10.1134/S0022476622050018.

    Article  CAS  Google Scholar 

  66. G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun., 2003, 2976; DOI: 10.1039/B308903G.

  67. Y. Liu, J. H. Her, A. Dailly, A. J. Ramirez-Cuesta, D. A. Neumann, C. M. Brown, J. Am. Chem. Soc., 2008, 130, 11813; DOI: https://doi.org/10.1021/ja803669w.

    Article  CAS  PubMed  Google Scholar 

  68. S. Krause, V. Bon, I. Senkovska, U. Stoeck, D. Wallacher, D. M. Többens, S. Zander, R. S. Pillai, G. Maurin, F. X. Coudert, S. Kaskel, Nature, 2016, 532, 348; DOI: https://doi.org/10.1038/nature17430.

    Article  CAS  PubMed  Google Scholar 

  69. A. M. Sheveleva, D. I. Kolokolov, A. A. Gabrienko, A. G. Stepanov, S. A. Gromilov, I. K. Shundrina, R. Z. Sagdeev, M. V. Fedin, E. G. Bagryanskaya, J. Phys. Chem. Lett., 2014, 5, 20; DOI: https://doi.org/10.1021/jz402357v.

    Article  CAS  PubMed  Google Scholar 

  70. A. S. Poryvaev, A. M. Sheveleva, D. I. Kolokolov, A. G. Stepanov, E. G. Bagryanskaya, M. V. Fedin, J. Phys. Chem. C, 2016, 120, 10698; DOI: https://doi.org/10.1021/acs.jpcc.6b02966.

    Article  CAS  Google Scholar 

  71. D. M. Polyukhov, A. S. Poryvaev, S. A. Gromilov, M. V. Fedin, Nano Lett., 2019, 19, 6506; DOI: https://doi.org/10.1021/acs.nanolett.9b02730.

    Article  CAS  PubMed  Google Scholar 

  72. A. S. Poryvaev, D. M. Polyukhov, M. V. Fedin, ACS Appl. Mater. Interfaces, 2020, 12, 16655; DOI: https://doi.org/10.1021/acsami.0c03462.

    Article  CAS  PubMed  Google Scholar 

  73. A. S. Poryvaev, A. A. Yazikova, D. M. Polyukhov, O. A. Chinak, V. A. Richter, O. A. Krumkacheva, M. V. Fedin, J. Phys. Chem. C, 2021, 125, 15606; DOI: https://doi.org/10.1021/acs.jpcc.1c03876.

    Article  CAS  Google Scholar 

  74. D. M. Polyukhov, A. S. Poryvaev, A. S. Sukhikh, S. A. Gromilov, M. V. Fedin, ACS Appl. Mater. Interfaces, 2021, 13, 40830; DOI: https://doi.org/10.1021/acsami.1c12166.

    Article  CAS  PubMed  Google Scholar 

  75. A. S. Poryvaev, A. A. Yazikova, D. M. Polyukhov, M. V. Fedin, Micropor. Mesopor. Mat., 2022, 330, 111564; DOI: https://doi.org/10.1016/j.micromeso.2021.111564.

    Article  CAS  Google Scholar 

  76. A. A. Efremov, A. S. Poryvaev, D. M. Polyukhov, M. V. Fedin, Micropor. Mesopor. Mat., 2022, 330, 111713; DOI: https://doi.org/10.1016/j.micromeso.2022.111713.

    Article  Google Scholar 

  77. T. Welton, Chem. Rev., 1999, 99, 2071; DOI: https://doi.org/10.1021/cr980032t.

    Article  CAS  PubMed  Google Scholar 

  78. J. P. Hallett, T. Welton, Chem. Rev., 2011, 111, 3508; DOI: https://doi.org/10.1021/cr1003248.

    Article  CAS  PubMed  Google Scholar 

  79. R. Hayes, G. G. Warr, R. Atkin, Chem. Rev., 2015, 115, 6357; DOI: https://doi.org/10.1021/cr500411q.

    Article  CAS  PubMed  Google Scholar 

  80. Y.-L. Wang, B. Li, S. Sarman, F. Mocci, Z. Lu, J. Yuan, A. Laaksonen, M. D. Fayer, Chem. Rev., 2020, 120, 5798; DOI: https://doi.org/10.1021/acs.chemrev.9b00693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. M. Yu. Ivanov, N. V. Surovtsev, M. V. Fedin, Russ. Chem. Rev., 2022, 91, RCR5031; DOI: https://doi.org/10.1070/RCR5031.

  82. M. Yu. Ivanov, S. L. Veber, S. A. Prikhod’ko, N. Yu. Adonin, E. G. Bagryanskaya, M. V. Fedin, J. Phys. Chem. B, 2015, 119, 13440; DOI: https://doi.org/10.1021/acs.jpcb.5b06792.

    Article  CAS  PubMed  Google Scholar 

  83. M. Yu. Ivanov, S. A. Prikhod’ko, N. Yu. Adonin, E. G. Bagryanskaya, M. V. Fedin, Z. Phys. Chem., 2017, 231, 391; DOI: https://doi.org/10.1515/zpch-2016-0820.

    Article  CAS  Google Scholar 

  84. M. Y. Ivanov, O. A. Krumkacheva, S. A. Dzuba, M. V. Fedin, Phys. Chem. Chem. Phys., 2017, 19, 26158; DOI: https://doi.org/10.1039/c7cp04890d.

    Article  CAS  PubMed  Google Scholar 

  85. M. Yu. Ivanov, S. A. Prikhod’ko, N. Yu. Adonin, 1. A. Kirilyuk, S. V. Adichtchev, N. V. Surovtsev, S. A. Dzuba, M. V. Fedin, J. Phys. Chem. Lett., 2018, 9, 4607; DOI: https://doi.org/10.1021/acs.jpclett.8b02097.

    Article  CAS  PubMed  Google Scholar 

  86. A. A. Kuzhelev, O. A. Krumkacheva, M. Yu. Ivanov, S. A. Prikhod’ko, N. Yu Adonin, V. M. Tormyshev, M. K. Bowman, M. V. Fedin, E. G. Bagryanskaya, J. Phys. Chem. B., 2018, 122, 8624; DOI: https://doi.org/10.1021/acs.jpcb.8b07714.

    Article  CAS  Google Scholar 

  87. I. V. Kurganskii, M. Yu. Ivanov, M. V. Fedin, J. Phys. Chem. B, 2018, 122, 6815; DOI: https://doi.org/10.1021/acs.jpcb.8b04000.

    Article  CAS  PubMed  Google Scholar 

  88. M. Yu. Ivanov, S. A. Prikhod’ko, N. Yu. Adonin, M. V. Fedin, J. Phys. Chem. B, 2019, 123, 9956; DOI: https://doi.org/10.1021/acs.jpcb.9b08933.

    Article  CAS  PubMed  Google Scholar 

  89. M. Yu. Ivanov, M. V. Fedin, Mendeleev Commun., 2018, 28, 565; DOI: https://doi.org/10.1016/j.mencom.2018.11.001.

    Article  CAS  Google Scholar 

  90. O. D. Bakulina, M. Yu. Ivanov, S. A. Prikhod’ko, S. Pylaeva, I. V. Zaytseva, N. V. Surovtsev, N. Yu. Adonin, M. V. Fedin, Nanoscale, 2020, 12, 19982; DOI: https://doi.org/10.1039/D0NR06065H.

    Article  CAS  PubMed  Google Scholar 

  91. M. Yu. Ivanov, A. S. Poryvaev, D. M. Polyukhov, S. A. Prikhod’ko, N. Yu. Adonin, M. V. Fedin, Nanoscale, 2020, 12, 23480; DOI: https://doi.org/10.1039/D0NR06961B.

    Article  CAS  PubMed  Google Scholar 

  92. M. Yu. Ivanov, S. A. Prikhod’ko, O. D. Bakulina, A. S. Kiryutin, N. Yu. Adonin, M. V. Fedin, Molecules, 2021, 26, 5828; DOI: https://doi.org/10.3390/molecules26195828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. M. Yu. Ivanov, Yu. F. Polienko, I. A. Kirilyuk, S. A. Prikhod’ko, N. Yu. Adonin, M. V. Fedin, Int. J. Mol. Sci., 2021, 22, 11900; DOI: https://doi.org/10.3390/ijms222111900.

    Article  CAS  Google Scholar 

  94. O. D. Bakulina, M. Yu. Ivanov, D. V. Alimov, S. A. Prikhod’ko, N. Yu. Adonin, M. V. Fedin, Molecules, 2022, 27, 5117; DOI: https://doi.org/10.3390/molecules27165117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. A. S. Poryvaev, A. M. Sheveleva, P. A. Demakov, S. S. Arzumanov, A. G. Stepanov, D. N. Dybtsev, M. V. Fedin, Appl. Magn. Reson., 2018, 49, 255; DOI: https://doi.org/10.1007/s00723-017-0962-1.

    Article  CAS  Google Scholar 

  96. P. A. Demakov, A. S. Poryvaev, K. A. Kovalenko, D. G. Samsonenko, M. V. Fedin, V. P. Fedin, D. N. Dybtsev, Inorg. Chem., 2020, 59, 15724; DOI: https://doi.org/10.1021/acs.inorgchem.0c02125.

    Article  CAS  PubMed  Google Scholar 

  97. S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science, 1999, 283, 1148; DOI: https://doi.org/10.1126/science.283.5405.1148.

    Article  CAS  PubMed  Google Scholar 

  98. D. M. Polyukhov, S. Krause, V. Bon, A. S. Poryvaev, S. Kaskel, M. V. Fedin, J. Phys. Chem. Lett., 2020, 11, 5856; DOI: https://doi.org/10.1021/acs.jpclett.0c01705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. A. S. Poryvaev, D. M. Polyukhov, E. Gjuzi, F. Hoffmann, M. Froba, M. V. Fedin, Inorg. Chem., 2019, 58, 8471; DOI: https://doi.org/10.1021/acs.inorgchem.9b00696.

    Article  CAS  PubMed  Google Scholar 

  100. M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin, F. Kapteijn, J. N. H. Reek, J. I. van der Vlugt, J. Gascon, Energy Environ. Sci., 2015, 8, 364; DOI: https://doi.org/10.1039/c4ee02853h.

    Article  CAS  Google Scholar 

  101. A. Iglesias-Juez, S. Castellanos, M. Monte, G. Agostini, D. Osadchii, M. A. Nasalevich, J. G. Santaclara, A. I. Olivos Suarez, S. L. Veber, M. V. Fedin, J. Gascón, J. Mater. Chem. A, 2018, 6, 17318; DOI: https://doi.org/10.1039/C8TA05735D.

    Article  CAS  Google Scholar 

  102. M. A. Nasalevich, C. H. Hendon, J. G. Santaclara, K. Svane, B. van der Linden, S. L. Veber, M. V. Fedin, A. J. Houtepen, M. A. van der Veen, F. Kapteijn, A. Walsh, J. Gascon, Sci. Rep., 2016, 6, 23676; DOI: https://doi.org/10.1038/srep23676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. J. G. Santaclara, A. I. Olivos-Suarez, A. Gonzalez-Nelson, D. Osadchii, M. A. Nasalevich, M. A. van der Veen, F. Kaptein, A. M. Sheveleva, S. L. Veber, M. V. Fedin, A. T. Murray, C. H. Hendon, A. Walsh, J. Gascon, Chem. Mater., 2017, 29, 8963; DOI: https://doi.org/10.1021/acs.chemmater.7b03320.

    Article  CAS  Google Scholar 

  104. A. Cadiau, N. Kolobov, S. Srinivasan, M. Goesten, H. Haspel, A. Bavykina, M. Tchalala, P. Maity, A. Goryachev, A. Poryvaev, M. Eddaoudi, M. Fedin, O. Mohammed, J. Gascon, Angew. Chem., Int. Ed., 2020, 59, 13468; DOI: https://doi.org/10.1002/anie.202000158.

    Article  CAS  Google Scholar 

  105. D. Osadchii, A. I. Olivos Suarez, Á. Szécsényi, G. Li, M. A. Nasalevich, I. Dugulan, P. Serra-Crespo, E. J. M. Hensen, S. L. Veber, M. V. Fedin, G. Sankar, E. A. Pidko, J. Gascon, ACS Catal., 2018, 8, 5542; DOI: https://doi.org/10.1021/acscatal.8b00505.

    Article  CAS  Google Scholar 

  106. N. Kosinov, A. S. G. Wijpkema, E. Uslamin, R. Rohling, F. J. A. G. Coumans, B. Mezari, A. Parastaev, A. S. Poryvaev, M. V. Fedin, E. A. Pidko, E. J. M. Hensen, Angew. Chem., Int. Ed., 2018, 57, 1016; DOI: https://doi.org/10.1002/anie.201711098.

    Article  CAS  Google Scholar 

  107. A. A. Gabrienko, S. A. Yashnik, A. A. Kolganov, A. M. Sheveleva, S. S. Arzumanov, M. V. Fedin, F. Tuna, A. G. Stepanov, Inorg. Chem., 2020, 59, 2037; DOI: https://doi.org/10.1021/acs.inorgchem.9b03462.

    Article  CAS  PubMed  Google Scholar 

  108. M. Atzori, R. Sessoli, J. Am. Chem. Soc., 2019, 141, 11339; DOI: https://doi.org/10.1021/jacs.9b00984.

    Article  CAS  PubMed  Google Scholar 

  109. A. S. Poryvaev, E. Gjuzi, D. M. Polyukhov, F. Hoffmann, M. Fröba, M. V. Fedin, Angew. Chem., Int. Ed., 2021, 60 8683; DOI: https://doi.org/10.1002/anie.202015058.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Fedin.

Additional information

Fedin Matvey Vladimirovich, born in 1977, Doctor of Sicence in Physics and Mathematics, Professor at the Russian Academy of Sciences (RAS), Director of International Tomography Center, Siberian Branch (SB) of the RAS, a specialist in physical chemistry, and the author of more than 400 scientific publications (including two monographs). He is Deputy Chairman of the Academic Council at ITC SB RAS, candidate for Corresponding Member of the RAS in 2022. M. V. Fedin developed the scientific foundations of the spin state switching effects in molecular magnets including copper(II) complexes with stable nitroxide radicals; he discovered the photoswitching effects, developed a number of EPR techniques and applied them to study copper(n) complexes with stable nitroxide radicals and other systems promising for molecular magnetism and spintronics applications; developed a methcovered the photoswitching effectodology for EPR investigation of structural and functional properties of porous metal-organic frameworks (MOF). He demonstrated the high potential of the method of spin probes encapsulated in MOF pores in solving practical problems related to the separation of hydrocarbon mixtures; developed and applied EPR-based techniques to solve topical problems in catalysis/photocatalysis, and developed a comprehensive EPR methodology for investigations of nanostructuring in ionic liquids (ILs) including structural anomalies in ILs and IL-containing composite nanomaterials representing a new type of smart media controlled by external stimuli. Six Candidate of Science theses were defended under the supervision of M. V. Fedin. He is a member of the Dissertation Councils D003.051.01 and D003.014.02, a member of the United Scientific Council on Chemical Sciences at SB RAS, a member of the Expert Council for Presidential Research Funding Program at the Russian Science Foundation (RSF); an expert at the RAS, RSF, and Russian Foundation for Basic Research; a member of the International Society of Magnetic Resonance (ISMAR) Council and the Asia-Pacific EPR/ESR Society (APES) Council, and a member of the Organizing Committees of several major international conferences on molecular magnetism and EPR spectroscopy.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 2, pp. 312–334, February, 2023.

No human or animal subjects were used in this research.

The authors declare no competing interests.

This work was financially supported by the Russian Science Foundation (Project No. 19-13-00071 regarding the studies of ionic liquids) and the Russian Foundation for Basic Research (Project No. 20-53-12005 regarding the organosilica materials; Project Nos 18-29-04013 and 19-33-90035 regarding the MOF; and Project No. 18-03-00362 regarding the molecular magnets).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedin, M.V. EPR spectroscopy of functional nanostructures: new targeted approaches and applications. Russ Chem Bull 72, 312–334 (2023). https://doi.org/10.1007/s11172-023-3802-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3802-2

Key words

Navigation