Skip to main content
Log in

Photocatalysts Pt/TiO2 for CO2 reduction under ultraviolet irradiation

  • Brief Communications
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The kinetic regularities of photocatalytic CO2 reduction under the UV irradiation (380 nm) in the presence of water vapor were studied on the Pt-modified TiO2-based photocatalysts. The influence of deposited metal and thermal treatment of TiO2 on the rates of CO2 and methane reduction and CO formation rate was investigated. The highest reaction rates were achieved for TiO2 calcined at 700 °C for 3 h and then modified by platinum (1 wt.%). In this case, the methane formation rate was 0.3 µmol h−1 (g of catalyst)−1, and the total rate of photocatalytic CO2 reduction was 2.6 µmol h−1 (g of catalyst)−1, which is three times higher than the activity of the catalyst prepared without preliminary thermal treatment of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. A. Kozlova, M. N. Lyulyukin, D. V. Kozlov, V. N. Parmon, Russ. Chem. Rev., 2021, 90, 1520; DOI: https://doi.org/10.1070/RCR5004.

    Article  Google Scholar 

  2. Z. Fu, Q. Yang, Z. Liu, F. Chen, F. Yao, T. Xie, Y. Zhong, D. Wang, J. Li, X. Li, G. Zeng, J. CO2 Util., 2019, 34, 63; DOI: https://doi.org/10.1016/j.jcou.2019.05.032.

    Article  CAS  Google Scholar 

  3. H. Sun, S. Wang, Energy and Fuels, 2013, 28, 22; DOI: https://doi.org/10.1021/EF401426X.

    Article  Google Scholar 

  4. A. V. Vorontsov, E. A. Kozlova, A. S. Besov, D. V. Kozlov, S. A. Kiselev, A. S. Safatov, Kinet. Catal., 2010, 51, 801–808; DOI: https://doi.org/10.1134/S0023158410060042.

    Article  CAS  Google Scholar 

  5. J. L. White, M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Chem. Rev., 2015, 115, 12888; DOI: https://doi.org/10.1021/ACS.CHEMREV.5B00370.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Gao, K. Qian, B. Xu, Z. Li, J. Zheng, S. Zhao, F. Ding, Y. Sun, Z. Xu, Carbon Resour. Convers., 2020, 3, 46; DOI: https://doi.org/10.1016/J.CRCON.2020.02.003.

    Article  CAS  Google Scholar 

  7. Z. Kovačič, B. Likozar, M. Huš, ACS Catal., 2020, 10, 14984; DOI: https://doi.org/10.1021/ACSCATAL.0C02557.

    Article  Google Scholar 

  8. B. T. Barrocas, N. Ambrožová, K. Kočí, Materials, 2022, 15, 967; DOI: https://doi.org/10.3390/MA15030967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. N. Lyulyukin, A. Y. Kurenkova, A. V. Bukhtiyarov, E. A. Kozlova, Mendeleev Commun., 2020, 30, 192; DOI: https://doi.org/10.1016/j.mencom.2020.03.021.

    Article  CAS  Google Scholar 

  10. A. A. Rempel, A. A. Valeeva, Russ. Chem. Bull., 2019, 68, 2163; DOI: https://doi.org/10.1007/s11172-019-2685-y.

    Article  CAS  Google Scholar 

  11. I. R. Subbotina, D. V. Barsukov, A. O. Terent’ev, I. B. Krylov, Russ. Chem. Bull., 2021, 70, 340; DOI: https://doi.org/10.1007/s11172-021-3091-9.

    Article  CAS  Google Scholar 

  12. A. Y. Kurenkova, A. M. Kremneva, A. A. Saraev, V. Murzin, E. A. Kozlova, V. V. Kaichev, Catal. Lett., 2021, 151, 748; DOI: https://doi.org/10.1007/s10562-020-03321-w.

    Article  CAS  Google Scholar 

  13. M. Muscetta, R. Andreozzi, L. Clarizia, I. Di Somma, R. Marotta, Int. J. Hydrogen Energy, 2020, 45, 28531; DOI: https://doi.org/10.1016/j.ijhydene.2020.07.225.

    Article  CAS  Google Scholar 

  14. J. Ran, M. Jaroniec, S. Z. Qiao, Adv. Mater., 2018, 30, 1704649; DOI: https://doi.org/10.1002/ADMA.201704649.

    Article  Google Scholar 

  15. S. R. Lingampalli, M. M. Ayyub, C. N. R. Rao, ACS Omega, 2017, 2, 2740; DOI: https://doi.org/10.1021/ACSOMEGA.7B00721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Y. Kurenkova, E. A. Kozlova, V. V. Kaichev, Kinet. Catal., 2021, 62, 62; DOI: https://doi.org/10.1134/S002315842006004X.

    Article  CAS  Google Scholar 

  17. A. A. Saraev, A. Y. Kurenkova, E. Y. Gerasimov, E. A. Kozlova, Nanomaterials, 2022, 12, 1584; DOI: https://doi.org/10.3390/nano12091584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. W. N. Wang, W. J. An, B. Ramalingam, S. Mukherjee, D. M. Niedzwiedzki, S. Gangopadhyay, P. Biswas, J. Am. Chem. Soc., 2012, 134, 11276; DOI: https://doi.org/10.1021/JA304075B.

    Article  CAS  PubMed  Google Scholar 

  19. J. Low, B. Cheng, J. Yu, Appl. Surf. Sci., 2017, 392, 658; DOI: https://doi.org/10.1016/J.APSUSC.2016.09.093.

    Article  CAS  Google Scholar 

  20. S. Ghosh, P. M. G. Nambissan, J. Solid State Chem., 2019, 275, 174; DOI: https://doi.org/10.1016/J.JSSC.2019.04.010.

    Article  CAS  Google Scholar 

  21. Z. Zafar, S. Yi, J. Li, C. Li, Y. Zhu, A. Zada, W. Yao, Z. Liu, X. Yue, Energy Environ. Mater., 2022, 5, 68; DOI: https://doi.org/10.1002/EEM2.12171.

    Article  CAS  Google Scholar 

  22. V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, J. Mater., 2017, 3, 3; DOI: https://doi.org/10.1016/J.JMAT.2016.11.002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kozlova.

Additional information

The study of the photocatalysts by the XPS and HR TEM methods was carried out using the equipment of the Center for Collective Use “National Center of Investigation of Catalysts.” The authors are grateful to T. V. Larina for studying the optical properties of the photocatalysts. This work was financially supported by the Russian Science Foundation (Project No. 21-73-10235).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Ekaterina Aleksandrovna Kozlova, born 1982, Doctor of Chemical Sciences, leading researcher of the G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences (SB RAS), elected Professor of RAS in 2022. Field of scientific interest: investigation of processes for alternative power engineering. The active and stable photocatalysts functioning under the visible light irradiation were developed under her leadership. E. A. Kozlova is the Head of Department of Post-Graduate Courses of the G. K. Boreskov Institute of Catalysis (SB RAS) since 2019 and the Vice-Leader of the educational direction of the Competence Center of the National Technological Initiative (NTI Center) “Hydrogen As a Basis of Low-Carbon Economics” founded in the late 2021. E. A. Kozlova is a coauthor of more than 80 articles and the author of nine RF patents, more than 140 abstracts of conferences, and one chapter in the monograph. E. A. Kozlova is an expert of the Republic Research Scientific Consultation Expertise Center, Russian Science Foundation and RAS; a winner of competitions of the Grants of President of RF for young scientists, candidates and doctors of sciences; and a member of the Editorial Board of the Chimica Techno Acta journal. She also worked an invited editor of two special issues of the Topics in Catalysis journal (Springer). E. A. Kozlova is a laureate of the Prize of XVI Competition of the European Academy for young scientists of Russia (2009), L’Oreal-UNESCO Prize for women in science (2011), and M. M. Lavrent’ev Competition of grants for young scientists (2010).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 269–276, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurenkova, A.Y., Gerasimov, E.Y., Saraev, A.A. et al. Photocatalysts Pt/TiO2 for CO2 reduction under ultraviolet irradiation. Russ Chem Bull 72, 269–276 (2023). https://doi.org/10.1007/s11172-023-3732-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3732-2

Key words

Navigation