Skip to main content
Log in

Effect of crystal packing on charge transfer in the heteroleptic gallium(III) complex

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The five-coordinated gallium(III) complex (APMe)GaI(bipy) (1), bearing two types of redox-active ligands, namely, the 4,6-di-tert-butyl-N-(2,6-dimethylphenyl)-o-iminobenzoquinone dianion (APMe) and 2,2′-bipyridyl along with an iodine atom in the coordination sphere, was synthesized and characterized in detail. The molecular structure of compound 1 established by single-crystal X-ray diffraction analysis. Compound 1 is stable in the crystalline state in the absence of atmospheric oxygen and moisture; however, it undergoes decomposition in solution due to symmetrization. The color of complex 1 was found to differ essentially in crystals and in solution. The observed effect is due to possible intermolecular charge transfer in the crystalline state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. P. Gerasimova, A. V. Shamsieva, I. D. Strel’nik, S. A. Katsyuba, E. I. Musina, A. A. Karasik, O. G. Sinyashin, Russ. Chem. Bull., 2020, 69, 449; DOI: https://doi.org/10.1007/s11172-020-2783-x.

    Article  CAS  Google Scholar 

  2. J. Wu, Z. Shi, L. Zhu, J. Li, X. Han, M. Xu, S. Hao, Y. Fan, T. Shao, H. Bai, B. Peng, W. Hu, Adv. Opt. Mater., 2022, 10, 2102514; DOI: https://doi.org/10.1002/adom.202102514.

    Article  CAS  Google Scholar 

  3. A. A. Kalinin, S. M. Sharipova, L. N. Islamova, G. M. Fazleeva, D. N. Busyurova, A. V. Sharipova, O. D. Fominykh, M. Yu. Balakina, Russ. Chem. Bull., 2022, 71, 1009; DOI: https://doi.org/10.1007/s11172-022-3502-6.

    Article  CAS  Google Scholar 

  4. E. Marechal, Prog. Org. Coat., 1982, 10, 251; DOI: https://doi.org/10.1016/0300-9440(82)80022-2.

    Article  CAS  Google Scholar 

  5. D. Peng, G. Tang, J. Hu, Q. Xie, J. Zhou, W. Zhang, C. Zhong, Polym. Bull., 2015, 72, 653; DOI: https://doi.org/10.1007/s00289-014-1284-1.

    Article  CAS  Google Scholar 

  6. C.-L. Ho, H. Li, W.-Y. Wong, J. Organomet. Chem., 2014, 751, 261; DOI: https://doi.org/10.1016/j.jorganchem.2013.09.035.

    Article  CAS  Google Scholar 

  7. Y. Saygili, M. Stojanovic, N. Flores-Díaz, S. M. Zakeeruddin, N. Vlachopoulos, M. Grätzel, A. Hagfeldt, Inorganics, 2019, 7, 30; DOI: https://doi.org/10.3390/inorganics7030030.

    Article  CAS  Google Scholar 

  8. M. D. Ward, J. Solid State Electrochem., 2005, 9, 778; DOI: https://doi.org/10.1007/s10008-005-0668-4.

    Article  CAS  Google Scholar 

  9. H. Atallah, C. M. Taliaferro, K. A. Wells, F. N. Castellano, Dalton Trans., 2020, 49, 11565; DOI: https://doi.org/10.1039/D0DT01765E.

    Article  CAS  PubMed  Google Scholar 

  10. J. García-Cañadas, A. P. Meacham, L. M. Peter, M. D. Ward, Angew. Chem., 2003, 115, 3119; DOI: https://doi.org/10.1002/ange.200351338.

    Article  Google Scholar 

  11. N. Sekar, V. Y. Gehlot, Resonance, 2010, 15, 819; DOI: https://doi.org/10.1007/s12045-010-0091-8.

    Article  CAS  Google Scholar 

  12. L. Giribabu, R. K. Kanaparthi, V. Velkannan, Chem. Rec., 2012, 12, 306; DOI: https://doi.org/10.1002/tcr.201100044.

    Article  CAS  PubMed  Google Scholar 

  13. H. Michaels, I. Benesperi, T. Edvinsson, A. B. Muñoz-Garcia, M. Pavone, G. Boschloo, M. Freitag, Inorganics, 2018, 6, 53; DOI: https://doi.org/10.3390/inorganics6020053.

    Article  Google Scholar 

  14. B. O’Regan, M. Grätzel, Nature, 1991, 353, 737; DOI: https://doi.org/10.1038/353737a0.

    Article  Google Scholar 

  15. M. Grätzel, Inorg. Chem., 2005, 44, 6841; DOI: https://doi.org/10.1021/ic0508371.

    Article  PubMed  Google Scholar 

  16. Q. Miao, J. Gao, Z. Wang, H. Yu, Y. Luo, T. Ma, Inorg. Chim. Acta, 2011, 376, 619; DOI: https://doi.org/10.1016/j.ica.2011.07.046.

    Article  CAS  Google Scholar 

  17. A. G. Imer, R. H. B. Syan, M. Gülcan, Y. S. Ocak, A. Tombak, J. Mater. Sci.: Mater. Electron., 2018, 29, 898; DOI: https://doi.org/10.1007/s10854-017-7986-z.

    Google Scholar 

  18. P. Ghosh, A. Begum, D. Herebian, E. Bothe, K. Hildenbrand, T. Weyhermüller, K. Wieghardt, Angew. Chem., Int. Ed., 2003, 42, 563; DOI: https://doi.org/10.1002/anie.200390162.

    Article  CAS  Google Scholar 

  19. L. A. Cameron, J. W. Ziller, A. F. Heyduk, Chem. Sci., 2016, 7, 1807; DOI: https://doi.org/10.1039/C5SC02703A.

    Article  CAS  PubMed  Google Scholar 

  20. J. Best, I. V. Sazanovich, H. Adams, R. D. Bennett, E. S. Davies, A. J. Meyer, M. Towrie, S. A. Tikhomirov, O. V. Bouganov, M. D. Ward, J. A. Weinstein, Inorg. Chem., 2010, 49, 10041; DOI: https://doi.org/10.1021/ic101344t.

    Article  CAS  PubMed  Google Scholar 

  21. P. A. Scattergood, P. Jesus, H. Adams, M. Delor, I. V. Sazanovich, H. D. Burrows, C. Serpa, J. A. Weinstein, Dalton Trans., 2015, 44, 11705; DOI: https://doi.org/10.1039/C4DT03466J.

    Article  CAS  PubMed  Google Scholar 

  22. A. V. Maleeva, I. V. Ershova, O. Y. Trofimova, K. V. Arsenyeva, I. A. Yakushev, A. V. Piskunov, Mendeleev Commun., 2022, 32, 83; DOI: https://doi.org/10.1016/j.mencom.2022.01.027.

    Article  CAS  Google Scholar 

  23. V. G. Sokolov, D. A. Lukina, A. A. Skatova, M. V. Moskalev, E. V. Baranov, I. L. Fedushkin, Russ. Chem. Bull., 2021, 70, 2119]; DOI: https://doi.org/10.1007/s11172-021-3323-z.

    Article  CAS  Google Scholar 

  24. I. L. Fedushkin, D. S. Yambulatov, A. A. Skatova, E. V. Baranov, S. Demeshko, A. S. Bogomyakov, V. I. Ovcharenko, E. M. Zueva, Inorg. Chem., 2017, 56, 9825; DOI: https://doi.org/10.1021/acs.inorgchem.7b01344.

    Article  CAS  PubMed  Google Scholar 

  25. I. V. Ershova, A. V. Piskunov, Russ. J. Coord. Chem., 2020, 46, 154; DOI: https://doi.org/10.1134/S1070328420030021.

    Article  CAS  Google Scholar 

  26. A. W. Addison, T. N. Rao, J. Reedijk, J. v. Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349; DOI: https://doi.org/10.1039/DT9840001349.

  27. M. G. Chegerev, A. V. Piskunov, Russ. J. Coord. Chem., 2018, 44, 258; DOI: https://doi.org/10.1134/S1070328418040036.

    Article  CAS  Google Scholar 

  28. S. S. Batsanov, Russ. J. Inorg. Chem., 1991, 36, 1694.

    Google Scholar 

  29. M. A. Kinzhalov, A. S. Novikov, O. V. Khoroshilova, N. A. Bokach, J. Struct. Chem., 2018, 59, 1302; DOI: https://doi.org/10.1134/S0022476618060082.

    Article  CAS  Google Scholar 

  30. A. S. Novikov, D. M. Ivanov, Z. M. Bikbaeva, N. A. Bokach, V. Y. Kukushkin, Cryst. Growth Des., 2018, 18, 7641; DOI: https://doi.org/10.1021/acs.cgd.8b01457.

    Article  CAS  Google Scholar 

  31. O. Semyonov, K. A. Lyssenko, D. A. Safin, Inorg. Chim. Acta, 2019, 488, 238; DOI: https://doi.org/10.1016/j.ica.2018.12.054.

    Article  CAS  Google Scholar 

  32. K. V. Arsenyeva, I. V. Ershova, M. G. Chegerev, A. V. Cherkasov, R. R. Aysin, A. V. Lalov, G. K. Fukin, A. V. Piskunov, J. Organomet. Chem., 2020, 927, 121524; DOI: https://doi.org/10.1016/j.jorganchem.2020.121524.

    Article  CAS  Google Scholar 

  33. K. I. Pashanova, N. M. Lazarev, A. A. Kukinov, A. A. Zolotukhin, T. A. Kovylina, O. Y. Trofimova, B. I. Petrov, A. V. Piskunov, Chemistry Select, 2022, 7, e202104477; DOI: https://doi.org/10.1002/slct.202104477.

    CAS  Google Scholar 

  34. K. Ohno, Y. Kusano, S. Kaizaki, A. Nagasawa, T. Fujihara, Inorg. Chem., 2018, 57, 14159; DOI: https://doi.org/10.1021/acs.inorgchem.8b02074.

    Article  CAS  PubMed  Google Scholar 

  35. I. P. Oliveri, G. Malandrino, S. Mirabella, S. D. Bella, Dalton Trans., 2018, 47, 15977; DOI: https://doi.org/10.1039/c8dt03904f.

    Article  CAS  PubMed  Google Scholar 

  36. B. A. Rosales, L. E. Mundt, T. G. Allen, D. T. Moore, K. J. Prince, C. A. Wolden, G. Rumbles, L. T. Schelhas, L. M. Wheeler, Nat. Commun., 2020, 11, 5234; DOI: https://doi.org/10.1038/s41467-020-19009-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Q. Zheng, S. Borsley, T. Tu, S. L. Cockroft, Chem. Commun., 2020, 56, 14705; DOI: https://doi.org/10.1039/d0cc06775j.

    Article  CAS  Google Scholar 

  38. M. Kato, M. Yoshida, Y. Sun, A. Kobayashi, J. Photochem. Photobiol. C: Photochem. Rev., 2022, 51, 100477; DOI: https://doi.org/10.1016/j.jphotochemrev.2021.100477.

    Article  CAS  Google Scholar 

  39. P. Yu, D. Peng, L.-H. He, J.-L. Chen, J.-Y. Wang, S.-J. Liu, H.-R. Wen, Inorg. Chem., 2022, 61, 254; DOI: https://doi.org/10.1021/acs.inorgchem.1c02807.

    Article  CAS  PubMed  Google Scholar 

  40. A. Bondi, J. Phys. Chem., 1966, 70, 3006; DOI: https://doi.org/10.1021/j100881a503.

    Article  CAS  Google Scholar 

  41. J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Chem. Commun., 2007, 3814; DOI: https://doi.org/10.1039/B704980C.

  42. D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1980.

    Google Scholar 

  43. G. A. Abakumov, N. O. Druzhkov, Y. A. Kurskii, A. S. Shavyrin, Russ. Chem. Bull., 2003, 52, 712; DOI: https://doi.org/10.1023/A:1023979311368.

    Article  CAS  Google Scholar 

  44. A. V. Piskunov, I. N. Mescheryakova, A. S. Bogomyakov, G. V. Romanenko, V. K. Cherkasov, G. A. Abakumov, Inorg. Chem. Commun., 2009, 12, 1067; DOI: https://doi.org/10.1016/j.inoche.2009.08.023.

    Article  CAS  Google Scholar 

  45. Rigaku Oxford Diffraction. CrysAlisPro Software System, ver. 1.171.40.84a, Rigaku Corporation, Wroclaw (Poland), 2018.

  46. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Google Scholar 

  47. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. P. Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford CT, 2013.

  48. A. D. Becke, J. Chem. Phys., 1993, 98, 1372; DOI: https://doi.org/10.1063/1.464304.

    Article  CAS  Google Scholar 

  49. A. V. Maleeva, O. Yu. Trofimova, I. V. Ershova, K. V. Arsen’eva, K. I. Pashanova, I. A. Yakushev, A. V. Cherkasov, R. R. Aysin, A. V. Piskunov, Russ. Chem. Bull., 2022, 71, 1441.

    Article  CAS  Google Scholar 

  50. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17 (2017). The University of Western Australia, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Ershova or R. R. Aysin.

Additional information

The work was financially supported by the Council for Grants of the President of Russian Federation (I. V. Ershova, Scholarship of the President of the Russian Federation for young scientists and graduate students carrying out promising research and development in priority areas of modernization of the Russian economy No. SP-1538.2021.1).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Alexander Vladimirovich Piskunov, born in 1975, Doctor of Chemical Sciences, Professor of the Russian Academy of Sciences, Deputy Director for Research at the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences (Nizhny Novgorod), Professor of the Department of Organic Chemistry of the N. I. Lobachevsky Nizhny Novgorod State University, Candidate for Corresponding Member of the Russian Academy of Sciences in the elections of 2022, expert in the field of organoelement and coordination chemistry, author and co-author of more than 400 scientific publications, including 200 articles. He made a significant contribution to the development of the theory of catalytic transformations of organic molecules. Namely, he implemented a strategy for using the activating effect of the complexation between Lewis acids and redox-active ligands, discovered the phenomenon of redox isomeric transformation of organotin compounds, promising for the use of derivatives of main-group metals to obtain bistable molecules employed for the creation of molecular sensors and switches, addressed the issues of designing magneto-active molecules and controlling the magnetic exchange between paramagnetic centers in the directed design of multispin metal complexes with radical ligands as elements of magnetic and spin devices, developed an approach to activate organoelement and coordination compounds of main-group metals in redox reactions by transferring the center of redox transformations from a complexing agent to an organic ligand. Professor Piskunov is the Head of a number of Russian projects, a member of the Expert Council of the Russian Science Foundation, an expert of the Federal Register of Experts in the Scientific and Technical Sphere, an expert of the Russian Foundation for Basic Research, a member of the Expert Council of the Higher Attestation Commission. He is a member of the editorial boards of “INEOS OPEN” and “Journal of Structural Chemistry”. He was awarded with a medal of the Ministry of Science and Higher Education and Science of the Russian Federation “For contribution to the implementation of state policy in the field of scientific and technological development.”

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 193–201, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershova, I.V., Maleeva, A.V., Aysin, R.R. et al. Effect of crystal packing on charge transfer in the heteroleptic gallium(III) complex. Russ Chem Bull 72, 193–201 (2023). https://doi.org/10.1007/s11172-023-3724-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3724-2

Key words

Navigation