Skip to main content
Log in

Effect of the metal ion radius on the structure of SrII—ZnII and SrII—CdII complexes with cyclobutane-1,1-dicarboxylate anions

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Strontium(II)—zinc(II) and strontium(II)—cadmium(II) coordination compounds with dianions of cyclobutane-1,1-dicarboxylic acid (H2cbdc) were synthesized. In the complexes [Sr4Zn4(cbdc)8(H2O)9]n(1) and {[SrCd(cbdc)2(H2O)3] · 3H2O}n(2), the cyclobutane-1,1-dicarboxylate dianions are coordinated to strontium atoms in a chelate fashion to form monomeric mono- and bischelate moieties, which link the d-metal atoms into a polymer structure. An increase in the ion radius of the d-metal in going from zinc(II) to cadmium(II) is accompanied by a decrease in the dimensionality of the coordination polymer from layered to chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Demakov, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2022, 71, 83; DOI: https://doi.org/10.1007/s11172-022-3380-y.

    Article  CAS  Google Scholar 

  2. V. G. Sokolov, M. V. Moskalev, T. S. Koptseva, A. A. Skatova, E. V. Baranov, I. L. Fedushkin, Russ. Chem. Bull., 2020, 69, 125; DOI: https://doi.org/10.1007/s11172-020-2733-7.

    Article  CAS  Google Scholar 

  3. M. A. Shmelev, G. N. Kuznetsova, N. V. Gogoleva, F. M. Dolgushin, Yu. V. Nelyubina, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, Russ. Chem. Bull., 2021, 70, 830; DOI: https://doi.org/10.1007/s11172-021-3156-9.

    Article  CAS  Google Scholar 

  4. X. Xu, H. Li, Z. Xu, Chem. Eng. J., 2022, 436, 135028; DOI: https://doi.org/10.1016/j.cej.2022.135028.

    Article  CAS  Google Scholar 

  5. M. Déniz, J. Pasán, B. Rasines, P. Lorenzo-Luis, F. Lahoz, C. Vera-Gonzales, M. Julve, C. Ruiz-Pérez, Inorg. Chem. Front., 2017, 4, 1384; DOI: https://doi.org/10.1039/C7QI00212B.

    Article  Google Scholar 

  6. A. H. Wibowo, Y. Suryandari, A. Masykur, S. Pérez-Yáñez, A. Rodríguez-Diéguez, J. Cepeda, J. Mater. Chem. C., 2018, 6, 10870; DOI: https://doi.org/10.1039/C8TC03598A.

    Article  CAS  Google Scholar 

  7. T.-Q. Song, J. Dong, H.-L. Gao, J.-Z. Cui, Inorg. Chim. Acta., 2017, 466, 393; DOI: https://doi.org/10.1016/j.ica.2017.06.037.3.

    Article  CAS  Google Scholar 

  8. L. Moreno-Gómez, F. Sánchez-Férez, T. Calvet, M. Font-Bardiac, J. Pons, Inorg. Chim. Acta., 2020, 506, 119561; DOI: https://doi.org/10.1016/j.ica.2020.119561.

    Article  Google Scholar 

  9. A. A. Andreichenko, P. V. Burlak, K. A. Kovalenko, D. G. Samsonenko, V. P. Fedin, Russ. J. Struct. Chem., 2022, 63, 378; DOI: https://doi.org/10.1134/S0022476622030052.

    Article  CAS  Google Scholar 

  10. D. I. Pavlov, A. A. Ryadun, D. G. Samsonenko, V. P. Fedin, A. S. Potapov, Russ. Chem. Bull., 2021, 70, 857; DOI: https://doi.org/10.1007/s11172-021-3159-6.

    Article  CAS  Google Scholar 

  11. J.-G. Zhang, W.-J. Gong, Y.-S. Guan, H.-X. Li, D. J. Young, J.-P. Lang, Cryst. Growth Des., 2018, 18, 6172; DOI: https://doi.org/10.1021/acs.cgd.8b01040.

    Article  CAS  Google Scholar 

  12. M. A. Ryumin, Zh. V. Dobrokhotova, A. L. Emelina, M. A. Bukov, N. V. Gogoleva, K. S. Gavrichev, E. N. Zorina-Tikhonova, L. I. Demina, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, V. M. Novotortsev, Polyhedron, 2015, 87, 28; DOI: https://doi.org/10.1016/j.poly.2014.10.031.

    Article  CAS  Google Scholar 

  13. P. S. Koroteev, Zh. V. Dobrokhotova, V. M. Novotortsev, Russ. J. Gen. Chem., 2018, 88, 1277; DOI: https://doi.org/10.1134/S1070363218060397.

    Article  CAS  Google Scholar 

  14. P. S. Koroteev, Zh. V. Dobrokhotova, F. V. Grechnikov, V. M. Novotortsev, Russ. J. Gen. Chem., 2018, 88, 1290; DOI: https://doi.org/10.1134/S1070363218060403.

    Article  CAS  Google Scholar 

  15. R. D. Shannon, Acta Cryst., 1976, A32, 751; DOI: https://doi.org/10.1107/S0567739476001551.

    Article  CAS  Google Scholar 

  16. G. G. Sezer, M. Arıcı, İ. Erucar, O. Z. Yeşilel, H. U. Özel, B. T. Gemici, H. Erer, J. Solid State Chem., 2017, 255, 89; DOI: https://doi.org/10.1016/j.jssc.2017.08.002.

    Article  CAS  Google Scholar 

  17. L.-D. Guo, Y. Liu, L.-J. Guo, J.-J. Cao, W.-H. Li, T. Liu, S. Qiao, B. Wang, Z. Anorg. Allg. Chem., 2021, 647, 1077; DOI: https://doi.org/10.1002/zaac.202000367.

    Article  CAS  Google Scholar 

  18. Y. Chen, Q. Gao, W. Chen, D. Dao, Y. Li, W. Liu, W. Li, Chem. Asian J., 2015, 10, 411; DOI: https://doi.org/10.1002/asia.201403025.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Chen, S. Zou, Y. Tang, H. Hu, Polyhedron, 2019, 159, 18; DOI: https://doi.org/10.1016/j.poly.2018.11.011.

    Article  CAS  Google Scholar 

  20. Y. Chen, S. She, Q. Gao, D. Gao, D. Wang, Y. Li, W. Liu, W. Li, Cryst. Eng. Commun., 2014, 16, 1091; DOI: https://doi.org/10.1039/C3CE41975D.

    Article  CAS  Google Scholar 

  21. X.-P. Kang, L.-H. Zhu, Y.-S. Hu, Z. An, Inorg. Chem. Commun., 2013, 29, 11; DOI: https://doi.org/10.1016/j.inoche.2012.11.030.

    Article  CAS  Google Scholar 

  22. N. Audebrand, E. Jeanneau, T. Bataille, S. Raite, D. Louer, Solid State Sci., 2004, 6, 579; 3DOI: https://doi.org/10.1016/j.solidstatesciences.2004.03.007.

    Article  CAS  Google Scholar 

  23. J.-D. Lin, S.-T. Wu, Z.-H. Li, S.-W. Du, Dalton Trans., 2010, 39, 10719; DOI: https://doi.org/10.1039/C0DT00390E.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Wang, C. Li, Z. Anorg. Allg. Chem., 2019, 645, 87; DOI: https://doi.org/10.1002/zaac.201800280.

    Article  CAS  Google Scholar 

  25. Y.-Y. Huang, X. Zhang, J.-K. Cheng, Y.-G. Yao, Inorg. Chem. Commun., 2012, 23, 6; DOI: https://doi.org/10.1016/j.inoche.2012.05.016.

    Article  CAS  Google Scholar 

  26. X. Zhang, Y.-Y. Huang, Q.-P. Lin, J. Zhang, Y.-G. Yao, Dalton Trans., 2013, 42, 2294; DOI: 0.1039/C2DT31536J.

    Article  CAS  PubMed  Google Scholar 

  27. X. Zhang, Y.-Y. Huang, J.-K. Cheng, Y.-G. Yao, J. Zhang, F. Wang, Cryst. Eng. Commun., 2012, 14, 4843; DOI: https://doi.org/10.1039/C2CE25440A.

    Article  CAS  Google Scholar 

  28. M. A. Agafonov, E. V. Alexandrov, N. A. Artyukhova, G. E. Bekmukhamedov, V. A. Blatov, V. V. Butova, Y. M. Gayfulin, A. A. Garibyan, Z. N. Gafurov, Yu. G. Gorbunova, L. G. Gordeeva, M. S. Gruzdev, A. N. Gusev, G. L. Denisov, D. N. Dybtsev, Yu. Yu. Enakieva, A. A. Kagilev, A. O. Kantyukov, M. A. Kiskin, K. A. Kovalenko, A. M. Kolker, D. I. Kolokolov, Y. M. Litvinova, A. A. Lysova, N. V. Maksimchuk, Y. V. Mironov, Yu. V. Nelyubina, V. V. Novikov, V. I. Ovcharenko, A. V. Piskunov, D. M. Polyukhov, V. A. Polyakov, V. G. Ponomareva, A. S. Poryvaev, G. V. Romanenko, A. V. Soldatov, M. V. Solovyeva, A. G. Stepanov, I. V. Terekhova, O. Yu. Trofimova, V. P. Fedin, M. V. Fedin, O. A. Kholdeeva, A. Yu. Tsivadze, U. V. Chervonova, A. I. Cherevko, V. F. Shul’gin, E. S. Shutova, D. G. Yakhvarov, Russ. J. Struct. Chem., 2022, 63, 671; DOI: https://doi.org/10.1134/S0022476622050018.

    Article  CAS  Google Scholar 

  29. I. Gil de Muro, M. Insausti, L. Lezama, J. L. Pizarro, M. I. Arriortua, T. Rojo, Eur. J. Inorg. Chem., 1999, 935; DOI: https://doi.org/10.1002/(SiCi)1099-0682(199906)1999:6<935::AiD-EJiC935>3.0.CO;2-M.

  30. M.-L. Guo, L. Liu, C.-C. Lu, Acta Cryst., Sect. E: Struct. Rep. Online, 2011, 67, m19; DOI: https://doi.org/10.1107/S1600536810049779.

    Article  CAS  Google Scholar 

  31. E. S. Bazhina, G. G. Aleksandrov, A. A. Sidorov, I. L. Eremenko, Russ. J. Coord. Chem., 2015, 41, 730; DOI: https://doi.org/10.1134/S1070328415110019.

    Article  CAS  Google Scholar 

  32. I. Gil de Muro, F. A. Mautner, M. Insausti, L. Lezama, M. I. Arriortua, T. Rojo, Inorg. Chem., 1998, 37, 3243; DOI: https://doi.org/10.1021/ic9800132.

    Article  Google Scholar 

  33. E. S. Bazhina, M. E. Nikiforova, G. G. Aleksandrov, V. V. Minin, N. N. Efimov, A. A. Sidorov, V. M. Novotortsev, I. L. Eremenko, Russ. Chem. Bull., 2011, 60, 779; DOI: https://doi.org/10.1007/s11172-011-0127-6.

    Article  Google Scholar 

  34. E. S. Bazhina, M. E. Nikiforova, G. G. Aleksandrov, N. N. Efimov, M. A. Kiskin, E. A. Ugolkova, V. V. Minin, A. A. Sidorov, V. M. Novotortsev, I. L. Eremenko, Russ. Chem. Bull., 2012, 61, 1411; DOI: https://doi.org/10.1007/s11172-012-0184-5.

    Google Scholar 

  35. Z. Rzączyńska, A. Bartyzel, E. Olszewska, W. Sawka-Dobrowolska, Polyhedron, 2006, 25, 687; DOI: https://doi.org/10.1016/j.poly.2005.07.044.

    Article  Google Scholar 

  36. E. N. Zorina-Tikhonova, N. V. Gogoleva, A. A. Sidorov, G. G. Aleksandrov, M. A. Kiskin, A. V. Vologzhanina, L. I. Demina, A. S. Bogomyakov, N. N. Efimov, V. S. Mironov, V. M. Novotortsev, I. L. Eremenko, Polyhedron, 2017, 130, 67; DOI: https://doi.org/10.1016/j.poly.2017.03.056.

    Article  CAS  Google Scholar 

  37. E. Zorina-Tikhonova, A. Matyukhina, I. Skabitskiy, M. Shmelev, D. Korchagin, K. Babeshkin, N. Efimov, M. Kiskin, I. Eremenko, Crystals, 2020, 10, 1130; DOI: https://doi.org/10.3390/cryst10121130.

    Article  CAS  Google Scholar 

  38. E. N. Zorina-Tikhonova, A. S. Chistyakov, A. K. Matyukhina, N. N. Efimov, M. A. Shmelev, I. V. Skabitsky, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, Russ. J. Struct. Chem., 2021, 62, 1209; DOI: https://doi.org/10.1134/S0022476621080060.

    Article  CAS  Google Scholar 

  39. A. O. Okhlobystin, I. L. Eremenko, V. N. Storozhenko, K. V. Oleinikova, A. S. Kamyshnikova, K. P. Pashchenko, E. V. Shinkar, E. N. Zorina-Tikhonova, M. A. Kiskin, A. E. Baranchikov, S. Yu. Kottsov, N. T. Berberova, ACS Omega, 2021, 6, 23181; DOI: https://doi.org/10.1021/acsomega.1c02777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E. N. Zorina-Tikhonova, A. S. Chistyakov, M. A. Kiskin, A. V. Vologzhanina, A. A. Sidorov, I. L. Eremenko, Russ. J. Coord. Chem., 2021, 47, 409; DOI: https://doi.org/10.1134/S1070328421060099.

    Article  CAS  Google Scholar 

  41. M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, SHAPE v.2.1, Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools, Barcelona, Spain, 2013.

  42. N. Xhaferaj, A. Tăbăcaru, M. Moroni, G. A. Senchyk, K. V. Domasevitch, C. Pettinari, S. Galli, Inorganics, 2020, 8, 60; DOI: https://doi.org/10.3390/inorganics8110060.

    Article  CAS  Google Scholar 

  43. S.-Q. Zang, R. Liang, Y.-J. Fan, H.-W. Hou, T. C. W. Makab, Dalton Trans., 2010, 39, 8022; DOI: https://doi.org/10.1039/C0DT00374C.

    Article  CAS  PubMed  Google Scholar 

  44. SMART (control) and SAINT (integration). Software. Version 5.0, Bruker AXS Inc., Madison (WI, USA), 1997.

  45. G. M. Sheldrick, SADABS, Bruker AXS Inc., Madison (WI, USA), 1997.

    Google Scholar 

  46. G. M. Sheldrick, Acta Crystallogr. C., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

  47. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

  48. S. Alvarez, M. Llunell, J. Chem. Soc., Dalton Trans., 2000, 19, 3288; DOI: https://doi.org/10.1039/B004878J.

    Article  Google Scholar 

  49. D. Casanova, M. Llunell, P. Alemany, S. Alvarez, Chem. Eur. J., 2005, 11, 1479; DOI: https://doi.org/10.1002/chem.200400799.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Zorina-Tikhonova.

Additional information

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation as part of the State Assignment of the N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Aleksei Anatolievich Sidorov, born in 1957, Chief Researcher at the N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Professor, Candidate for Corresponding Member of the Russian Academy of Sciences in the elections of 2022, expert in coordination chemistry, author and co-author of 350 scientific publications. He contributed to the development of the chemistry of homometallic and heterometallic polynuclear carboxylate complexes. A. A. Sidorov is the Deputy Editor-in-Chief of the Russian Journal of Coordination Chemistry, a member of the Academic Council of the IGIC RAS, the Vice Chairman of the Dissertation Council on inorganic Chemistry of the IGIC RAS for defending Ph. D. and Doctor of Science degrees.

Mikhail Aleksandrovich Kiskin, born in 1980, Doctor of Chemical Sciences, Leading Researcher at the N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, winner of the XV competition of the European Academy for young scientists of Russia, Candidate for Corresponding Member of the Russian Academy of Sciences in the elections of 2022, expert in coordination chemistry, author and co-author of 307 scientific publications and three patents. He developed methods for the synthesis of heterometallic carboxylate compounds based on combinations of stable homo- and heterometallic moieties, serving as building blocks for the directed self-assembly of new metal-organic frameworks, functional components for the modification of aerogels, and precursors of bulk and/or nanosized complex metal oxides and thin-film materials based on these compounds. M. A. Kiskin is a member of the Academic Council of the IGIC RAS, a member of the Higher Attestation Commission at the Ministry of Science and Higher Education of the Russian Federation, a member of the Expert Council for the Presidential Program of the Russian Science Foundation.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 184–192, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorina-Tikhonova, E.N., Gogoleva, N.V., Chistyakov, A.S. et al. Effect of the metal ion radius on the structure of SrII—ZnII and SrII—CdII complexes with cyclobutane-1,1-dicarboxylate anions. Russ Chem Bull 72, 184–192 (2023). https://doi.org/10.1007/s11172-023-3723-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3723-3

Key words

Navigation