Skip to main content
Log in

Activation of dinitrogen by group 6 metal complexes

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Fixation of atmospheric nitrogen and N2 reduction to NH3 under mild conditions form an important and, at the same time, challenging area of modern fundamental science. This review considers studies of the reactivity of dinitrogen complexes of group 6 metals (mainly molybdenum and tungsten) with relatively simple phosphine ligands, which made it possible to identify the main stages of N2 reduction in the coordination sphere of a transition metal and factors affecting the reaction efficiency. The attention is focused on the studies of the protonation of the coordinated N2 molecule, which is a key step in the catalytic cycle of nitrogen reduction, proceeding as alternating proton and electron transfer steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Tsygankov, Appl. Biochem. Microbiol., 2007, 43, 250; DOI: https://doi.org/10.1134/S0003683807030040.

    Article  CAS  Google Scholar 

  2. H. Bothe, O. Schmitz, M. G. Yates, W. E. Newton, Microbiol. Mol. Biol. Rev., 2010, 74, 529; DOI: https://doi.org/10.1128/mmbr.00033-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C. J. Van der Ham, M. T. Koper, D. G. Hetterscheid, Chem. Soc. Rev., 2014, 43, 5183; DOI: https://doi.org/10.1039/C4CS00085D.

    Article  CAS  PubMed  Google Scholar 

  4. J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci., 2008, 1, 636; DOI: https://doi.org/10.1038/ngeo325.

    Article  CAS  Google Scholar 

  5. M. Appl, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Wheinheim, 7th ed., 2000; DOI: https://doi.org/10.1002/14356007.a02_143.pub2.

    Google Scholar 

  6. B. M. Hoffman, D. Lukoyanov, Z.-Y. Yang, D. R. Dean, L. C. Seefeldt, Chem. Rev., 2014, 114, 4041; DOI: https://doi.org/10.1021/cr400641x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Mori, J. Organomet. Chem., 2004, 689, 4210; DOI: https://doi.org/10.1016/j.jorganchem.2004.05.053.

    Article  CAS  Google Scholar 

  8. J. G. Andino, S. Mazumder, K. Pal, K. G. Caulton, Angew. Chem., Int. Ed., 2013, 52, 4726; DOI: https://doi.org/10.1002/anie.201209168.

    Article  CAS  Google Scholar 

  9. W. R. Buratto, L. J. Murray, in Comprehensive Coordination Chemistry III, Elsevier, 3rd ed., 2020, Vol. 8, Part 16, Ch. 8.26, p. 659; DOI: https://doi.org/10.1016/B978-0-12-409547-2.14822-X.

  10. C. Rebreyend, B. de Bruin, Angew. Chem., Int. Ed., 2015, 54, 42; DOI: https://doi.org/10.1002/anie.201409727.

    Article  CAS  Google Scholar 

  11. I. Vidyaratne, J. Scott, S. Gambarotta, P. H. M. Budzelaar, Inorg. Chem., 2007, 46, 7040; DOI: https://doi.org/10.1021/ic700810f.

    Article  CAS  PubMed  Google Scholar 

  12. D. Sellmann, W. Weiss, Angew. Chem., Int. Ed., 1978, 17, 269; DOI: https://doi.org/10.1002/anie.197802691.

    Article  Google Scholar 

  13. I. Klopsch, M. Finger, C. Würtele, B. Milde, D. B. Werz, S. Schneider, J. Am. Chem. Soc., 2014, 136, 6881; DOI: https://doi.org/10.1021/ja502759d.

    Article  CAS  PubMed  Google Scholar 

  14. H. Kunkely, A. Vogler, Z. Naturforsch., B: J. Chem. Sci., 2012, 67, 488; DOI: https://doi.org/10.5560/znb.2012-0080.

    Article  CAS  Google Scholar 

  15. P. L. Holland, Dalton Trans., 2010, 39, 5415; DOI: https://doi.org/10.1039/C001397H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Chatt, G. A. Heath, R. L. Richards, J. Chem. Soc., Dalton Trans., 1974, 2074; DOI: https://doi.org/10.1039/DT9740002074.

  17. M. E. Vol’pin, V. B. Shur, Dokl. Akad. Nauk SSSR [Rep. USSR Acad. Sci.], 1964, 156, 1102 (in Russian).

    Google Scholar 

  18. M. E. Volpin, V. B. Shur, M. A. Ilatovskaya, Russ. Chem. Bull., 1964, 13, 1644; DOI: https://doi.org/10.1007/BF00846321.

    Article  Google Scholar 

  19. M. E. Vol’pin, V. B. Shur, Vestn. Akad. Nauk SSSR [Herald USSR Acad. Sci.], 1965, 1, 51 (in Russian).

    Google Scholar 

  20. M. E. Volpin, M. A. Ilatovskaya, E. I. Larikov, M. L. Khidekel’, Yu. A. Shvetsov, V. B. Shur, Dokl. Akad. Nauk SSSR [Rep. USSR Acad. Sci.], 1965, 164, 331 (in Russian).

    CAS  Google Scholar 

  21. M. Vol’pin, V. Shur, Nature, 1966, 209, 1236; DOI: https://doi.org/10.1038/2091236a0.

    Article  Google Scholar 

  22. T. A. Bazhenova, A. E. Shilov, Coord. Chem. Rev., 1995, 144, 69; DOI: https://doi.org/10.1016/0010-8545(95)01139-G.

    Article  CAS  Google Scholar 

  23. A. E. Shilov, A. K. Shilova, E. F. Kvashina, Kinet. Katal. [Kinet. Catal.] 1969, 10, 1402 (in Russian).

    CAS  Google Scholar 

  24. A. E. Shilov, Russ. Chem. Bull., 2003, 52, 2555; DOI: https://doi.org/10.1023/B:RUCB.00000.19873.81002.60.

    Article  CAS  Google Scholar 

  25. K. Shiina, J. Am. Chem. Soc., 1972, 94, 9266; DOI: https://doi.org/10.1021/ja00781a068.

    Article  CAS  Google Scholar 

  26. M. T. Mock, S. Chen, M. O’Hagan, R. Rousseau, W. G. Dougherty, W. S. Kassel, R. M. Bullock, J. Am. Chem. Soc., 2013, 135, 11493; DOI: https://doi.org/10.1021/ja405668u.

    Article  CAS  PubMed  Google Scholar 

  27. J. Chatt, G. Heath, G. Leigh, J. Chem. Soc., Chem. Commun., 1972, 444; DOI: https://doi.org/10.1039/C39720000444.

  28. J. Chatt, A. A. Diamantis, G. A. Heath, N. E. Hooper, G. J. Leigh, J. Chem. Soc., Dalton Trans., 1977, 688; DOI: https://doi.org/10.1039/DT9770000688.

  29. J. Chatt, G. Heath, R. Richards, J. Chem. Soc., Chem. Commun., 1972, 18, 1010; DOI: https://doi.org/10.1039/C39720001010.

    Article  Google Scholar 

  30. A. A. Diamantis, J. Chatt, G. J. Leigh, G. A. Heath, J. Organomet. Chem., 1975, 84, 11; DOI: https://doi.org/10.1016/S0022-328X(00)88785-9.

    Article  Google Scholar 

  31. J. Chatt, W. Hussain, G. J. Leigh, F. P. Terreros, J. Chem. Soc., Dalton Trans., 1980, 8, 1408; DOI: DT9800001408.

    Article  Google Scholar 

  32. J. Chatt, A. J. Pearman, R. L. Richards, Nature, 1975, 253, 39; DOI: https://doi.org/10.1038/253039b0.

    Article  CAS  Google Scholar 

  33. J. Chatt, A. J. Pearman, R. L. Richards, J. Chem. Soc., Dalton Trans., 1977, 1852; DOI: https://doi.org/10.1039/DT9770001852.

  34. H. Masanobu, M. Yasushi, T. Tamotsu, U. Yasuzo, Chem. Lett., 1978, 7, 1187; DOI: https://doi.org/10.1246/cl.1978.1187.

    Article  Google Scholar 

  35. T. Takahashi, Y. Mizobe, M. Sato, Y. Uchida, M. Hidai, J. Am. Chem. Soc., 1980, 102, 7461; DOI: https://doi.org/10.1021/ja00545a011.

    Article  CAS  Google Scholar 

  36. H. Oshita, Y. Mizobe, M. Hidai, J. Organomet. Chem., 1993, 456, 213; DOI: https://doi.org/10.1016/0022-328X(93)80428-E.

    Article  CAS  Google Scholar 

  37. C. J. Weiss, J. D. Egbert, S. Chen, M. L. Helm, R. M. Bullock, M. T. Mock, Organometallics, 2014, 33, 2189; DOI: https://doi.org/10.1021/om401127v.

    Article  CAS  Google Scholar 

  38. M. Yuki, Y. Miyake, Y. Nishibayashi, I. Wakiji, M. Hidai, Organometallics, 2008, 27, 3947; DOI: https://doi.org/10.1021/om800327j.

    Article  CAS  Google Scholar 

  39. Y. Xu, B. Zhang, Chem. Soc. Rev., 2014, 43, 2439; DOI: https://doi.org/10.1039/C3CS60351B.

    Article  CAS  PubMed  Google Scholar 

  40. M. Yuki, Y. Miyake, Y. Nishibayashi, Organometallics, 2009, 28, 5821; DOI: https://doi.org/10.1021/om9006467.

    Article  CAS  Google Scholar 

  41. D. V. Yandulov, R. R. Schrock, Science, 2003, 301, 76; DOI: https://doi.org/10.1126/science.1085326.

    Article  CAS  PubMed  Google Scholar 

  42. S. Schenk, B. Le Guennic, B. Kirchner, M. Reiher, Inorg. Chem., 2008, 47, 7934; DOI: https://doi.org/10.1021/ic8012409.

    Article  CAS  Google Scholar 

  43. M. Reiher, B. Le Guennic, B. Kirchner, Inorg. Chem., 2005, 44, 9640; DOI: https://doi.org/10.1021/ic0517568.

    Article  CAS  PubMed  Google Scholar 

  44. V. Ritleng, D. V. Yandulov, W. W. Weare, R. R. Schrock, A. S. Hock, W. M. Davis, J. Am. Chem. Soc., 2004, 126, 6150; DOI: https://doi.org/10.1021/ja0306415.

    Article  CAS  PubMed  Google Scholar 

  45. M. R. Reithofer, R. R. Schrock, P. Müller, J. Am. Chem. Soc., 2010, 132, 8349; DOI: https://doi.org/10.1021/ja1008213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. D. V. Yandulov, R. R. Schrock, Can. J. Chem., 2005, 83, 341; DOI: https://doi.org/10.1139/v05-013.

    Article  CAS  Google Scholar 

  47. K. Arashiba, Y. Miyake, Y. Nishibayashi, Nat. Chem., 2011, 3, 120; DOI: https://doi.org/10.1038/nchem.906.

    Article  CAS  PubMed  Google Scholar 

  48. R. A. Kinney, R. L. McNaughton, J. M. Chin, R. R. Schrock, B. M. Hoffman, Inorg. Chem., 2011, 50, 418; DOI: https://doi.org/10.1021/ic102127v.

    Article  CAS  PubMed  Google Scholar 

  49. R. R. Schrock, Angew. Chem., Int. Ed., 2008, 47, 5512; DOI: https://doi.org/10.1002/anie.200705246.

    Article  CAS  Google Scholar 

  50. E. Kinoshita, K. Arashiba, S. Kuriyama, Y. Miyake, R. Shimazaki, H. Nakanishi, Y. Nishibayashi, Organometallics, 2012, 31, 8437; DOI: https://doi.org/10.1021/om301046t.

    Article  CAS  Google Scholar 

  51. S. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, N. Kamaru, K. Yoshizawa, Y. Nishibayashi, J. Am. Chem. Soc., 2014, 136, 9719; DOI: https://doi.org/10.1021/ja5044243.

    Article  CAS  PubMed  Google Scholar 

  52. H. Tanaka, K. Arashiba, S. Kuriyama, A. Sasada, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Nat. Commun., 2014, 5, 3737; DOI: https://doi.org/10.1038/ncomms4737.

    Article  PubMed  Google Scholar 

  53. Y.-H. Tian, A. W. Pierpont, E. R. Batista, Inorg. Chem., 2014, 53, 4177; DOI: https://doi.org/10.1021/ic500221n.

    Article  CAS  PubMed  Google Scholar 

  54. K. Arashiba, K. Sasaki, S. Kuriyama, Y. Miyake, H. Nakanishi, Y. Nishibayashi, Organometallics, 2012, 31, 2035; DOI: https://doi.org/10.1021/om300011z.

    Article  CAS  Google Scholar 

  55. A. Eizawa, K. Arashiba, H. Tanaka, S. Kuriyama, Y. Matsuo, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Nat. Commun., 2017, 8, 14874; DOI: https://doi.org/10.1038/ncomms14874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. R. H. Morris, Chem. Rev., 2016, 116, 8588; DOI: https://doi.org/10.1021/acs.chemrev.5b00695.

    Article  CAS  PubMed  Google Scholar 

  57. G. Jia, R. H. Morris, C. T. Schweitzer, Inorg. Chem., 1991, 30, 593; DOI: https://doi.org/10.1021/ic00004a001.

    Article  CAS  Google Scholar 

  58. Y. Nishibayashi, S. Iwai, M. Hidai, Science, 1998, 279, 540; DOI: https://doi.org/10.1126/science.279.5350.540.

    Article  CAS  PubMed  Google Scholar 

  59. Y. Nishibayashi, S. Takemoto, S. Iwai, M. Hidai, Inorg. Chem., 2000, 39, 5946; DOI: https://doi.org/10.1021/ic000799f.

    Article  CAS  PubMed  Google Scholar 

  60. T. Shima, Z. Hou, in Nitrogen Fixation, Ed. Y. Nishibayashi, Springer, Cham, 2017, p. 23; DOI: https://doi.org/10.1007/3418_2016_3.

  61. M. D. Fryzuk, S. A. Johnson, Coord. Chem. Rev., 2000, 200–202, 379; DOI: https://doi.org/10.1016/S0010-8545(00)00264-2.

    Article  Google Scholar 

  62. Y. Roux, C. Duboc, M. Gennari, ChemPhysChem, 2017, 18, 2606; DOI: https://doi.org/10.1002/cphc.201700665.

    Article  CAS  PubMed  Google Scholar 

  63. M. Tamizmani, C. Sivasankar, Eur. J. Inorg. Chem., 2017, 4239; DOI: https://doi.org/10.1002/ejic.201700784.

  64. Y. Nishibayashi, S. Iwai, M. Hidai, J. Am. Chem. Soc., 1998, 120, 10559; DOI: https://doi.org/10.1021/ja981223g.

    Article  CAS  Google Scholar 

  65. Y. Nishibayashi, I. Wakiji, K. Hirata, M. R. DuBois, M. Hidai, Inorg. Chem., 2001, 40, 578; DOI: https://doi.org/10.1021/ic000716v.

    Article  CAS  PubMed  Google Scholar 

  66. A. S. Borovik, Acc. Chem. Res., 2005, 38, 54; DOI: https://doi.org/10.1021/ar030160q.

    Article  CAS  PubMed  Google Scholar 

  67. N. V. Kireev, O. A. Filippov, A. A. Pavlov, L. M. Epstein, V. D. Makhaev, V. P. Dyadchenko, E. S. Shubina, N. V. Belkova, Inorg. Chem., 2018, 57, 1656; DOI: https://doi.org/10.1021/acs.inorgchem.7b03027.

    Article  CAS  PubMed  Google Scholar 

  68. C. Tang, Q. Liang, A. R. Jupp, T. C. Johnstone, R. C. Neu, D. Song, S. Grimme, D. W. Stephan, Angew. Chem., 2017, 129, 16815; DOI: https://doi.org/10.1002/ange.201710337.

    Article  Google Scholar 

  69. J. B. Geri, J. P. Shanahan, N. K. Szymczak, J. Am. Chem. Soc., 2017, 139, 5952; DOI: https://doi.org/10.1021/jacs.7b01982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. A. Simonneau, R. Turrel, L. Vendier, M. Etienne, Angew. Chem., Int. Ed., 2017, 56, 12268; DOI: https://doi.org/10.1002/anie.201706226.

    Article  CAS  Google Scholar 

  71. J. Paradies, Eur. J. Org. Chem., 2019, 2019, 283; DOI: https://doi.org/10.1002/ejoc.201800944.

    Article  CAS  Google Scholar 

  72. L. Rocchigiani, Isr. J. Chem., 2015, 55, 134; DOI: https://doi.org/10.1002/ijch.201400139.

    Article  CAS  Google Scholar 

  73. L. Liu, B. Lukose, P. Jaque, B. Ensing, Green Energy Environ., 2019, 4, 20; DOI: https://doi.org/10.1016/j.gee.2018.06.001.

    Article  Google Scholar 

  74. I. Pappas, P. J. Chirik, J. Am. Chem. Soc., 2016, 138, 13379; DOI: https://doi.org/10.1021/jacs.6b08009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Belkova.

Additional information

This study was performed within the framework of the State Assignment (No. 075-00697-22-00) of the Ministry of Science and Higher Education of the Russian Federation.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Natalia Viktorovna Belkova, born in 1971, Doctor of Chemical Sciences, Professor of the Russian Academy of Sciences, Deputy Director for Science and Head of the Department of Organometallic Compounds of the A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, candidate for a Corresponding Member of the Russian Academy of Sciences in elections 2022, specialist in the physical organoelement chemistry, author of more than 320 scientific publications, including three book chapters and 114 papers in international peer-reviewed journals. The key scientific results of N. V. Belkova are concerned with catalytic systems based on transition metal complexes for reactions involving the activation of E-H bonds (E = C, N, O, B, metal) and conversion of small molecules. N. V. Belkova developed a methodology for integrated experimental and theoretical investigation of the mechanisms of stoichiometric and catalytic reactions involving transition metal complexes, in which the fundamentally important bond cleavage/formation steps are accomplished by cooperation of various functional sites, for example, hydrogenation of multiple bonds, dehydrocoupling of alcohols and silanes, H2 release from aminoboranes, and N2 reduction. N. V. Belkova is a member of the Editorial Boards of the journals Molecules and ChemistrySelect. N. V. Belkova supervised seven PhD students. She is a winner of the Prize of the European Academy for Young Scientists of C.I.S (1997); she received Acknowledgment from the Ministry of Science and Higher Education of the Russian Federation (2021).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 83–102, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kireev, N.V., Filippov, O.A., Epstein, L.M. et al. Activation of dinitrogen by group 6 metal complexes. Russ Chem Bull 72, 83–102 (2023). https://doi.org/10.1007/s11172-023-3716-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3716-2

Key words

Navigation