Skip to main content
Log in

Asymmetric organocatalysis: from a breakthrough methodology to sustainable catalysts and processes

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The evolution of modern catalytic methodologies for asymmetric organic synthesis, including transition metal and organocatalysis, is briefly considered. The results of the authors’ research group comprise the development of convenient, efficient, and reusable metal-free amine-containing catalysts (aminocatalysts) for manufacturing enantiomerically enriched organic compounds. The efficiency of the obtained catalysts is demonstrated for asymmetric aldol reactions, Michael reactions, and domino reactions, including green chemistry processes. The applicability of the developed catalysts and processes for the synthesis of natural product analogs and the most active enantiomers of clinically used drugs is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Flick, C. A. Leverett, H. X. Ding, E. McInturff, S. Fink, S. Mahapatra, D. W. Carney, E. A. Lindsey, J. C. DeForest, S. P. France, S. Berritt, S. V. Bigi-Botterill, T. S. Gibson, Y. Liu, C. J. O’Donnell, J. Med. Chem., 2021, 64, 3604; DOI: https://doi.org/10.1021/acs.jmedchem.1c00208.

    Article  CAS  PubMed  Google Scholar 

  2. Chirality in Drug Research, Vol. 33, Eds E. Francotte, W. Lindner, Wiley-VCH, Weinheim, 2006, 351 pp.; ISBN 3-527-31076-2.

    Google Scholar 

  3. A. L. Speirs, Lancet, 1962, 1, 303; DOI: https://doi.org/10.1016/s0140-6736(62)91248-5.

    Article  CAS  PubMed  Google Scholar 

  4. A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Nature, 2001, 409, 258; DOI: https://doi.org/10.1038/35051736.

    Article  CAS  PubMed  Google Scholar 

  5. B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman, D. J. Weinkauff, J. Am. Chem. Soc., 1977, 99, 5946; DOI: https://doi.org/10.1021/ja00460a018.

    Article  CAS  Google Scholar 

  6. R. Noyori, S. Hashiguchi, Acc. Chem. Res., 1997, 30, 97; DOI: https://doi.org/10.1021/ar9502341.

    Article  CAS  Google Scholar 

  7. T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974; DOI: https://doi.org/10.1021/ja00538a077.

    Article  CAS  Google Scholar 

  8. Y. Gao, J. M. Klunder, R. M. Hanson, H. Masamune, S. Y. Ko, K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765; DOI: https://doi.org/10.1021/ja00253a032.

    Article  CAS  Google Scholar 

  9. L. Süsse, B. M. Stoltz, Chem. Rev., 2021, 121, 4084; DOI: https://doi.org/10.1021/acs.chemrev.0c01115.

    Article  PubMed  PubMed Central  Google Scholar 

  10. O. Pàmies, J. Margalef, S. Cañellas, J. James, E. Judge, P. J. Guiry, C. Moberg, J.-E. Bäckvall, A. Pfaltz, M. A. Pericàs, M. Diéguez, Chem. Rev., 2021, 121, 4373; DOI: https://doi.org/10.1021/acs.chemrev.0c00736.

    Article  PubMed  PubMed Central  Google Scholar 

  11. H. Guan, C.-H. Tung, L. Liu, J. Am. Chem. Soc., 2022, 144, 5976; DOI: https://doi.org/10.1021/jacs.2c00638.

    Article  CAS  PubMed  Google Scholar 

  12. P. Yang, Q. Wang, B.-H. Cui, X.-D. Zhang, H. Liu, Y.-Y. Zhang, J.-L. Liu, W.-Y. Huang, R.-X. Liang, Y.-X. Jia, J. Am. Chem. Soc., 2022, 144, 1087; DOI: https://doi.org/10.1021/jacs.1c11092.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Gao, B. Zhang, L. Levy, H.-J. Zhang, C. He, P. S. Baran, J. Am. Chem. Soc., 2022, 144, 10992; DOI: https://doi.org/10.1021/jacs.2c04358.

    Article  CAS  PubMed  Google Scholar 

  14. A. Yesilcimen, N.-C. Jiang, F. H. Gottlieb, M. Wasa, J. Am. Chem. Soc., 2022, 144, 6173; DOI: https://doi.org/10.1021/jacs.2c01656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. A. Abozeid, H. Y. Kim, K. Oh, Org. Lett., 2022, 24, 1812; DOI: https://doi.org/10.1021/acs.orglett.2c00240.

    Article  CAS  PubMed  Google Scholar 

  16. S. Zhou, Y. Li, X. Liu, W. Hu, Z. Ke, X. Xu, J. Am. Chem. Soc., 2021, 143, 14703; DOI: https://doi.org/10.1021/jacs.1c06178.

    Article  CAS  PubMed  Google Scholar 

  17. Y. Guan, T. A. Buivydas, R. F. Lalisse, J. W. Attard, R. Ali, C. Stern, C. M. Hadad, A. E. Mattson, ACS Catal., 2021, 11, 6325; DOI: https://doi.org/10.1021/acscatal.1c01095.

    Article  CAS  Google Scholar 

  18. X. Zhang, J. Wang, S.-D. Yang, ACS Catal., 2021, 11, 14008; DOI: https://doi.org/10.1021/acscatal.1c04128.

    Article  CAS  Google Scholar 

  19. M. Lv, X. Li, ACS Catal., 2021, 11, 14829; DOI: https://doi.org/10.1021/acscatal.1c04460.

    Article  CAS  Google Scholar 

  20. W.-B. Zhang, G. Chen, S.-L. Shi, J. Am. Chem. Soc., 2022, 144, 130; DOI: https://doi.org/10.1021/jacs.1c12625.

    Article  CAS  PubMed  Google Scholar 

  21. S. Huang, G.-P. Zhang, Y.-J. Jiang, F.-L. Yu, C.-H. Ding, X.-L. Hou, Chem. Commun., 2022, 58, 3513; DOI: https://doi.org/10.1039/D1CC07074F.

    Article  CAS  Google Scholar 

  22. M. P. Wiesenfeldt, D. Moock, D. Paul, F. Glorius, Chem. Sci., 2021, 12, 5611; DOI: https://doi.org/10.1039/D0SC07099H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. F. Tan, M. Pu, J. He, J. Li, J. Yang, S. Dong, X. Liu, Y.-D. Wu, X. Feng, J. Am. Chem. Soc., 2021, 143, 2394; DOI: https://doi.org/10.1021/jacs.0c12683.

    Article  CAS  PubMed  Google Scholar 

  24. W. Liu, M. Pu, J. He, T. Zhang, S. Dong, X. Liu, Y.-D. Wu, X. Feng, J. Am. Chem. Soc., 2021, 143, 11856; DOI: https://doi.org/10.1021/jacs.1c05881.

    Article  CAS  PubMed  Google Scholar 

  25. L. Chen, M. Pu, S. Li, X. Sang, X. Liu, Y.-D. Wu, X. Feng, J. Am. Chem. Soc., 2021, 143, 19091; DOI: https://doi.org/10.1021/jacs.1c08382.

    Article  CAS  PubMed  Google Scholar 

  26. H. Wang, J. Wen, X. Zhang, Chem. Rev., 2021, 121, 7530; DOI: https://doi.org/10.1021/acs.chemrev.1c00075.

    Article  CAS  PubMed  Google Scholar 

  27. C. Kabes, R. Lucas, J. Gunn, J. Gladysz, ACS Catal., 2021, 11, 7762; DOI: https://doi.org/10.1021/acscatal.1c01883.

    Article  CAS  Google Scholar 

  28. J.-L. Hu, F. Bauer, B. Breit, ACS Catal., 2021, 11, 12301; DOI: https://doi.org/10.1021/acscatal.1c03306.

    Article  CAS  Google Scholar 

  29. K. N. Gavrilov, I. V. Chuchelkin, V. K. Gavrilov, S. V. Zheglov, I. D. Firsin, V. M. Trunina, A. V. Maximychev, A. M. Perepukhov, Russ. Chem. Bull., 2021, 70, 336; DOI: https://doi.org/10.1007/s11172-021-3090-x.

    Article  CAS  Google Scholar 

  30. S. Hübner, J. G. de Vries, V. Farina, Adv. Synth. Catal., 2016, 358, 3; DOI: https://doi.org/10.1002/adsc.201500846.

    Article  Google Scholar 

  31. Z. G. Hajos, D. R. Parrish, Pat. DE 2102623, 1971.

  32. U. Eder, G. R. Sauer, R. Wiechert, Pat. DE 2014757, 1971.

  33. Z. G. Hajos, D. R. Parrish, J. Org. Chem., 1974, 39, 1615; DOI: https://doi.org/10.1021/jo00925a003.

    Article  CAS  Google Scholar 

  34. A. G. Nigmatov, E. P. Serebryakov, Russ. Chem. Bull., 1993, 42, 213; DOI: https://doi.org/10.1007/bf00700021.

    Article  Google Scholar 

  35. E. P. Serebryakov, A. G. Nigmatov, M. A. Shcherbakov, Mendeleev Commun., 2001, 11, 174; DOI: https://doi.org/10.1070/MC2001v011n05ABEH001502.

    Article  Google Scholar 

  36. Y. Tu, Z.-X. Wang, Y. Shi, J. Am. Chem. Soc., 1996, 118, 9806; DOI: https://doi.org/10.1021/ja962345g.

    Article  CAS  Google Scholar 

  37. S. E. Denmark, Z. Wu, C. Crudden, H. Matsuhashi, J. Org. Chem., 1997, 62, 8288. DOI: https://doi.org/10.1021/jo971781y.

    Article  CAS  PubMed  Google Scholar 

  38. D. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, J.-H. Zheng, K.-K. Cheung, J. Am. Chem. Soc., 1996, 118, 491; DOI: https://doi.org/10.1021/ja9529549.

    Article  CAS  Google Scholar 

  39. M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc., 1998, 120, 4901; DOI: https://doi.org/10.1021/ja980139y.

    Article  CAS  Google Scholar 

  40. E. J. Corey, M. J. Grogan, Org. Lett., 1999, 1, 157; DOI: https://doi.org/10.1021/ol990623l.

    Article  CAS  PubMed  Google Scholar 

  41. B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc., 2000, 122, 2395; DOI: https://doi.org/10.1021/ja994280y.

    Article  CAS  Google Scholar 

  42. T. Hoffmann, G. Zhong, B. List, D. Shabat, J. Anderson, S. Gramatikova, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc., 1998, 120, 2768; DOI: https://doi.org/10.1021/ja973676b.

    Article  CAS  Google Scholar 

  43. K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc., 2000, 122, 4243; DOI: https://doi.org/10.1021/ja000092s.

    Article  CAS  Google Scholar 

  44. D. W. C. MacMillan, Nature, 2008, 455, 304; DOI: https://doi.org/10.1038/nature07367.

    Article  CAS  PubMed  Google Scholar 

  45. P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem., Int. Ed., 2008, 47, 6138; DOI: https://doi.org/10.1002/anie.200705523.

    Article  CAS  Google Scholar 

  46. Asymmetric Organocatalysis, Eds B. List, K. Maruoka, Georg Thieme Verlag KG, Stuttgard—New York, 2012, Vols. 1, 2; DOI: https://doi.org/10.1055/b-003-125727; https://doi.org/10.1055/b-003-125728.

    Google Scholar 

  47. J. Duan, P. Li, Catal. Sci. Technol., 2014, 4, 311; DOI: https://doi.org/10.1039/C3CY00739A.

    Article  CAS  Google Scholar 

  48. K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht, K. A. Jørgensen, Acc. Chem. Res., 2012, 45, 248; DOI: https://doi.org/10.1021/ar200149w.

    Article  CAS  PubMed  Google Scholar 

  49. Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem., Int. Ed., 2005, 44, 4212; DOI: https://doi.org/10.1002/anie.200500599.

    Article  CAS  Google Scholar 

  50. T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672; DOI: https://doi.org/10.1021/ja036972z.

    Article  CAS  PubMed  Google Scholar 

  51. T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc., 2005, 127, 119; DOI: https://doi.org/10.1021/ja044370p.

    Article  CAS  PubMed  Google Scholar 

  52. J. P. Malerich, K. Hagihara, V. H. Rawal, J. Am. Chem. Soc., 2008, 130, 14416; DOI: https://doi.org/10.1021/ja805693p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ye Zhu, J. P. Malerich, V. H. Rawal, Angew. Chem., Int. Ed., 2010, 49, 153; DOI: https://doi.org/10.1002/anie.200904779.

    Article  CAS  Google Scholar 

  54. T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem., Int. Ed., 2004, 43, 1566; DOI: https://doi.org/10.1002/anie.200353240.

    Article  CAS  Google Scholar 

  55. D. Uraguchi, M. Terada, J. Am. Chem. Soc., 2004, 126, 5356; DOI: https://doi.org/10.1021/ja0491533.

    Article  CAS  PubMed  Google Scholar 

  56. P. García-García, F. Lay, P. García-García, C. Rabalakos, B. List, Angew. Chem., Int. Ed., 2009, 48, 4363; DOI: https://doi.org/10.1002/anie.200901768.

    Article  Google Scholar 

  57. L. Schreyer, R. Properzi, B. List, Angew. Chem., Int. Ed., 2019, 58, 12761; DOI: https://doi.org/10.1002/anie.201900932.

    Article  CAS  Google Scholar 

  58. D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev., 2015, 115, 9307; DOI: https://doi.org/10.1021/acs.chemrev.5b00060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. R. S. Menon, A. T. Biju, V. Nair, Chem. Soc. Rev., 2015, 44, 5040; DOI: https://doi.org/10.1039/C5CS00162E.

    Article  CAS  PubMed  Google Scholar 

  60. S.-S. Jew, H.-G. Park, Chem. Commun., 2009, 7090; DOI: https://doi.org/10.1039/B914028J.

  61. K. Maruoka, Chem. Rec., 2010, 10, 254; DOI: https://doi.org/10.1002/tcr.201000019.

    Article  CAS  PubMed  Google Scholar 

  62. R. Herchl, M. Waser, Tetrahedron, 2014, 70, 1935; DOI: https://doi.org/10.1016/j.tet.2014.01.050.

    Article  CAS  Google Scholar 

  63. Y. Wei, M. Shi, Acc. Chem. Res., 2010, 43, 1005; DOI: https://doi.org/10.1021/ar900271g.

    Article  CAS  PubMed  Google Scholar 

  64. Z. Peng, N. Takenaka, Chem. Rec., 2012, 12, 28; DOI: https://doi.org/10.1002/tcr.201200010.

    Google Scholar 

  65. X. Liu, L. Lin, X. Feng, Acc. Chem. Res., 2011, 44, 574; DOI: https://doi.org/10.1021/ar200015s.

    Article  CAS  PubMed  Google Scholar 

  66. B. Han, X.-H. He, Y.-Q. Liu, G. He, C. Peng, J.-L. Li, Chem. Soc. Rev., 2021, 50, 1522; DOI: https://doi.org/10.1039/D0CS00196A.

    Article  CAS  PubMed  Google Scholar 

  67. S. Prévost, N. Dupré, M. Leutzsch, Q. Wang, V. Wakchaure, B. List, Angew. Chem., Int. Ed., 2014, 53, 8770; DOI: https://doi.org/10.1002/anie.201404909.

    Article  Google Scholar 

  68. F. Mandrelli, A. Blond, T. James, H. Kim, B. List, Angew. Chem., Int. Ed., 2019, 58, 11479; DOI: https://doi.org/10.1002/anie.201905623.

    Article  CAS  Google Scholar 

  69. S. B. Jones, B. Simmons, D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 13606; DOI: https://doi.org/10.1021/ja906472m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. S. B. Jones, B. Simmons, A. Mastracchio, D. W. C. MacMillan, Nature, 2011, 475, 183; DOI: https://doi.org/10.1038/nature10232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. B. N. Laforteza, M. Pickworth, D. W. C. MacMillan, Angew. Chem., Int. Ed., 2013, 52, 11269; DOI: https://doi.org/10.1002/anie.201305171.

    Article  CAS  Google Scholar 

  72. B. D. Horning, D. W. C. MacMillan, J. Am. Chem. Soc., 2013, 135, 6442; DOI: https://doi.org/10.1021/ja402933s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. D. Seebach, X. Sun, M.-O. Ebert, W. B. Schweizer, N. Purkayastha, A. K. Beck, J. Duschmalé, H. Wennemers, T. Mukaiyama, M. Benohoud, Y. Hayashi, M. Reiher, Helv. Chim. Acta, 2013, 96, 799; DOI: https://doi.org/10.1002/hlca.201300079.

    Article  CAS  Google Scholar 

  74. M. C. Holland, R. Gilmour, Angew. Chem., Int. Ed., 2015, 54, 3862; DOI: https://doi.org/10.1002/anie.201409004.

    Article  CAS  Google Scholar 

  75. J. Wan, Z. Zhao, F. Wang, X. Ma, Eur. J. Org. Chem., 2015, 5755, DOI: https://doi.org/10.1002/ejoc.201500566.

  76. X.-R. Huang, Q. Liu, J. Wang, J.-A. Xiao, H. Yang, Tetrahedron: Asymmetry, 2014, 25, 1590; DOI: https://doi.org/10.1016/j.tetasy.2014.10.019.

    Article  CAS  Google Scholar 

  77. N. Lokesh, A. Seegerer, J. Hioe, R. M. Gschwind, J. Am. Chem. Soc., 2018, 140, 1855; DOI: https://doi.org/10.1021/jacs.7b12343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. X. Fang, C.-J. Wang, Chem. Commun., 2015, 51, 1185; DOI: https://doi.org/10.1039/C4CC07909D.

    Article  CAS  Google Scholar 

  79. F. E. Held, S. B. Tsogoeva, Catal. Sci. Technol., 2016, 6, 645; DOI: https://doi.org/10.1039/C5CY01894C.

    Article  CAS  Google Scholar 

  80. A. S. Kucherenko, M. I. Struchkova, S. G. Zlotin, Eur. J. Org. Chem., 2006, 2000; DOI: https://doi.org/10.1002/ejoc.200500888.

  81. A. S. Kucherenko, D. E. Siyutkin, O. V. Maltsev, S. V. Kochetkov, S. G. Zlotin, Russ. Chem. Bull., 2012, 61, 1313; DOI: https://doi.org/10.1007/s11172-012-0177-4.

    Article  CAS  Google Scholar 

  82. S. G. Zlotin, A. S. Kucherenko, I. P. Beletskaya, Russ. Chem. Rev., 2009, 78, 737; DOI: https://doi.org/10.1070/RC2009v078n08ABEH004040.

    Article  CAS  Google Scholar 

  83. O. V. Maltsev, I. P. Beletskaya, S. G. Zlotin, Russ. Chem. Rev., 2011, 80, 1067; DOI: https://doi.org/10.1070/RC2011v080n11ABEH004249.

    Article  CAS  Google Scholar 

  84. Y. Wang, H. Lu, P.-F. Xu, Acc. Chem. Res., 2015, 48, 1832; DOI: https://doi.org/10.1021/acs.accounts.5b00217.

    Article  CAS  PubMed  Google Scholar 

  85. F. Vetica, R. M. de Figueiredo, M. Orsini, D. Tofani, T. Gasperi, Synthesis, 2015, 47, 2139; DOI: https://doi.org/10.1055/s-0034-1378742.

    Article  CAS  Google Scholar 

  86. W. Miao, T. H. Chan, Adv. Synth. Catal., 2006, 348, 1711; DOI: https://doi.org/10.1002/adsc.200606059.

    Article  CAS  Google Scholar 

  87. S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless, Angew. Chem., Int. Ed., 2005, 44, 3275; DOI: https://doi.org/10.1002/anie.200462883.

    Article  CAS  Google Scholar 

  88. D. E. Siyutkin, A. S. Kucherenko, M. I. Struchkova, S. G. Zlotin, Tetrahedron Lett., 2008, 49, 1212; DOI: https://doi.org/10.1016/j.tetlet.2007.12.044.

    Article  CAS  Google Scholar 

  89. D. E. Siyutkin, A. S. Kucherenko, S. G. Zlotin, Tetrahedron, 2009, 65, 1366; DOI: https://doi.org/10.1016/j.tet.2008.12.045.

    Article  CAS  Google Scholar 

  90. D. E. Siyutkin, A. S. Kucherenko, S. G. Zlotin, Russ. Chem. Bull., 2009, 58, 1899; DOI: https://doi.org/10.1007/s11172-009-0258-1.

    Article  CAS  Google Scholar 

  91. D. E. Siyutkin, A. S. Kucherenko, S. G. Zlotin, Tetrahedron, 2010, 66, 513; DOI: https://doi.org/10.1016/j.tet.2009.11.033.

    Article  CAS  Google Scholar 

  92. A. S. Kucherenko, V. V. Gerasimchuk, V. G. Lisnyak, Y. V. Nelyubina, S. G. Zlotin, Eur. J. Org. Chem., 2015, 5649; DOI: https://doi.org/10.1002/ejoc.201500775.

  93. Y. Shimoda, T. Kubo, M. Sugiura, S. Kotani, M. Nakajima, Angew. Chem., Int. Ed., 2013, 52, 3461; DOI: https://doi.org/10.1002/anie.201209848.

    Article  CAS  Google Scholar 

  94. S. V. Kochetkov, A. S. Kucherenko, S. G. Zlotin, Eur. J. Org. Chem., 2011, 6128; DOI: https://doi.org/10.1002/ejoc.201100707.

  95. S. V. Kochetkov, A. S. Kucherenko, G. V. Kryshtal, G. M. Zhdankina, S. G. Zlotin, Eur. J. Org. Chem., 2012, 7129; DOI: https://doi.org/10.1002/ejoc.201201144.

  96. S. V. Kochetkov, A. S. Kucherenko, S. G. Zlotin, Mendeleev Commun., 2015, 25, 168; DOI: https://doi.org/10.1016/j.mencom.2015.05.002.

    Article  CAS  Google Scholar 

  97. X.-Y. Xu, Z. Tang, Y.-Z. Wang, S.-W. Luo, L.-F. Cun, L.-Z. Gong, J. Org. Chem., 2007, 72, 9905; DOI: https://doi.org/10.1021/jo701868t.

    Article  CAS  PubMed  Google Scholar 

  98. A. S. Kucherenko, A. A. Kostenko, V. V. Gerasimchuk, S. G. Zlotin, Org. Biomol. Chem., 2017, 15, 7028; DOI: https://doi.org/10.1039/C7OB01852E.

    Article  CAS  PubMed  Google Scholar 

  99. V. G. Lisnyak, A. S. Kucherenko, E. F. Valeev, S. G. Zlotin, J. Org. Chem., 2015, 80, 9570; DOI: https://doi.org/10.1021/acs.joc.5b01555.

    Article  CAS  PubMed  Google Scholar 

  100. O. V. Maltsev, A. S. Kucherenko, S. G. Zlotin, Eur. J. Org. Chem. 2009, 5134; DOI: https://doi.org/10.1002/ejoc.200900807.

  101. B. S. Donslund, T. K. Johansen, P. H. Poulsen, K. S. Halskov, K. A. Jørgensen, Angew. Chem., Int. Ed., 2015, 54, 13860; DOI: https://doi.org/10.1002/anie.201503920.

    Article  CAS  Google Scholar 

  102. S. Brandau, A. Landa, J. Franzen, M. Marigo, K. A. Jørgensen, Angew. Chem., Int. Ed., 2006, 45, 4305; DOI: https://doi.org/10.1002/anie.200601025.

    Article  CAS  Google Scholar 

  103. O. V. Maltsev, A. S. Kucherenko, I. P. Beletskaya, V. A. Tartakovsky, S. G. Zlotin, Eur. J. Org. Chem., 2010, 2927; DOI: https://doi.org/10.1002/ejoc.201000239.

  104. O. V. Maltsev, A. O. Chizhov, S. G. Zlotin, Chem. Eur. J., 2011, 17, 6109; DOI: https://doi.org/10.1002/chem.201100388.

    Article  CAS  PubMed  Google Scholar 

  105. A. A. Kostenko, O. Yu. Kuznetsova, A. S. Kucherenko, S. G. Zlotin, Russ. Chem. Bull., 2021, 70, 885; DOI: https://doi.org/10.1007/s11172-021-3163-x.

    Article  CAS  Google Scholar 

  106. A. S. Kucherenko, D. E. Siyutkin, A. G. Nigmatov, A. O. Chizhov, S. G. Zlotin, Adv. Synth. Catal., 2012, 354, 3078; DOI: https://doi.org/10.1002/adsc.201200338.

    Article  CAS  Google Scholar 

  107. A. S. Kucherenko, V. G. Lisnyak, A. O. Chizhov, S. G. Zlotin, Eur. J. Org. Chem., 2014, 3808; DOI: https://doi.org/10.1002/ejoc.201400045.

  108. T. Meinertz, W. Kasper, C. Kahl, E. Jähnchen, Br. J. Clin. Pharmacol., 1978, 5, 187; DOI: https://doi.org/10.1111/j.1365-2125.1978.tb01622.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. G. Jaouen, S. Top, A. Vessieres, G. Leclercq, Curr. Med. Chem., 2004, 11, 2505; DOI: https://doi.org/10.2174/0929867043364487.

    Article  CAS  PubMed  Google Scholar 

  110. A. S. Kucherenko, A. A. Kostenko, G. M. Zhdankina, O. Yu. Kuznetsova, S. G. Zlotin, Green Chem., 2018, 20, 754; DOI: https://doi.org/10.1039/C7GC03626D.

    Article  CAS  Google Scholar 

  111. W.-Y. Siau, J. Wang, Catal. Sci. Technol., 2011, 1, 1298; DOI: https://doi.org/10.1039/C1CY00271F.

    Article  CAS  Google Scholar 

  112. H. Miyabe, Y. Takemoto, Bull. Chem. Soc. Jpn., 2008, 81, 785; DOI: https://doi.org/10.1246/bcsj.81.785.

    Article  CAS  Google Scholar 

  113. P. Chauhan, S. Mahajan, U. Kaya, D. Hack, D. Enders, Adv. Synth. Catal., 2015, 357, 253; DOI: https://doi.org/10.1002/adsc.201401003.

    Article  CAS  Google Scholar 

  114. X. Han, H.-B. Zhou, C. Dong, Chem. Rec., 2016, 16, 897; DOI: https://doi.org/10.1002/tcr.201500266.

    Article  CAS  PubMed  Google Scholar 

  115. B.-L. Zhao, J.-H. Li, D.-M. Du, Chem. Rec., 2017, 17, 994; DOI: https://doi.org/10.1002/tcr.201600140.

    Article  CAS  PubMed  Google Scholar 

  116. Y.-L. Sun, Y. Wei, M. Shi, ChemCatChem, 2017, 9, 718; DOI: https://doi.org/10.1002/cctc.201601144.

    Article  CAS  Google Scholar 

  117. A. Jeppesen, B. E. Nielsen, D. Larsen, O. M. Akselsen, T. I. Sølling, T. Brock-Nannestad, M. Pittelkow, Org. Biomol. Chem., 2017, 15, 2784; DOI: https://doi.org/10.1039/C7OB00441A.

    Article  CAS  PubMed  Google Scholar 

  118. R. S. Tukhvatshin, A. S. Kucherenko, Y. V. Nelyubina, S. G. Zlotin, ACS Catal., 2017, 7, 2981; DOI: https://doi.org/10.1021/acscatal.7b00562.

    Article  CAS  Google Scholar 

  119. A. S. Kucherenko, A. A. Kostenko, A. N. Komogortsev, B. V. Lichitsky, M. Yu. Fedotov, S. G. Zlotin, J. Org. Chem., 2019, 84, 4304; DOI: https://doi.org/10.1021/acs.joc.9b00252.

    Article  CAS  PubMed  Google Scholar 

  120. Handbook of Green Chemistry, Vol. 4. Supercritical Solvents, Eds P. G. Jessop, W. Leitner, Wiley-VCH, Weinheim, 2010; ISBN 3527325905.

    Google Scholar 

  121. A. G. Nigmatov, I. V. Kuchurov, D. E. Siyutkin, S. G. Zlotin, Tetrahedron Lett., 2012, 53, 3502; DOI: https://doi.org/10.1016/j.tetlet.2012.04.123.

    Article  CAS  Google Scholar 

  122. I. V. Kuchurov, A. G. Nigmatov, E. V. Kryuchkova, A. A. Kostenko, A. S. Kucherenko, S. G. Zlotin, Green Chem., 2014, 16, 1521; DOI: https://doi.org/10.1039/C3GC41647J.

    Article  CAS  Google Scholar 

  123. F. Palacios, C. Alonso, J. M. de los Santos, Chem. Rev., 2005, 105, 899; DOI: https://doi.org/10.1021/cr040672y.

    Article  CAS  PubMed  Google Scholar 

  124. C. M. R. Volla, I. Atodiresei, M. Rueping, Chem. Rev., 2014, 114, 2390; DOI: https://doi.org/10.1021/cr400215u.

    Article  CAS  PubMed  Google Scholar 

  125. H. Pellissier, Adv. Synth. Catal., 2012, 354, 237; DOI: https://doi.org/10.1002/adsc.201100714.

    Article  CAS  Google Scholar 

  126. O. V. Maltsev, A. S. Kucherenko, A. L. Chimishkyan, S. G. Zlotin, Tetrahedron: Asymmetry, 2010, 21, 2659; DOI: https://doi.org/10.1016/j.tetasy.2010.10.020.

    Article  CAS  Google Scholar 

  127. R. S. Tukhvatshin, A. S. Kucherenko, Y. V. Nelyubina, S. G. Zlotin, Eur. J. Org. Chem., 2018, 7000; DOI: https://doi.org/10.1002/ejoc.201801423.

  128. E. V. Filatova, O. V. Turova, I. V. Kuchurov, A. A. Kostenko, A. G. Nigmatov, S. G. Zlotin, J. Supercrit. Fluids, 2016, 109, 35; DOI: https://doi.org/10.1016/j.supflu.2015.11.004.

    Article  CAS  Google Scholar 

  129. R. A. Kovalevsky, A. S. Kucherenko, A. A. Korlyukov, S. G. Zlotin, Adv. Synth. Catal., 2022, 364, 426; DOI: https://doi.org/10.1002/adsc.202101019.

    Article  CAS  Google Scholar 

  130. A. A. Kostenko, K. A. Bykova, A. S. Kucherenko, A. N. Komogortsev, B. V. Lichitsky, S. G. Zlotin, Org. Biomol. Chem., 2021, 19, 1780; DOI: https://doi.org/10.1039/D0OB02283G.

    Article  CAS  PubMed  Google Scholar 

  131. R. A. Kovalevsky, M. V. Smirnov, A. S. Kucherenko, K. A. Bykova, E. V. Shikina, S. G. Zlotin, Eur. J. Org. Chem., 2022, e202101435; DOI: https://doi.org/10.1002/ejoc.202101435.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Zlotin.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Sergei Grigor’evich Zlotin, born in 1952, Head of I. N. Nazarov laboratory of fine organic synthesis at the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Doctor of Chemical Sciences, Professor. S. G. Zlotin was elected Corresponding Member of the Russian Academy of Sciences in 2022 (for more detailed information, see Russ. Chem. Bull, 2022, 71, 1559; DOI: 10.1007/s11172-022-3565-4).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 42–60, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucherenko, A.S., Zlotin, S.G. Asymmetric organocatalysis: from a breakthrough methodology to sustainable catalysts and processes. Russ Chem Bull 72, 42–60 (2023). https://doi.org/10.1007/s11172-023-3713-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3713-5

Key words

Navigation