Skip to main content
Log in

Chemistry of difluoromethylenefullerenes

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Difluoromethylenefullerenes belonging to structurally flexible bridged fullerene derivatives have a rare distinctive feature, viz., insertion of CF2 group into the C=C bond of the fullerene cage is accompanied by electrocyclic rearrangement with the formation of unusual products termed homofullerenes. This makes the electron-withdrawing properties more pronounced, has a decisive influence on the chemical properties of compounds in the neutral and anionic states, and facilitates cleavage of the C—C bond between the bridgehead carbon atoms. Depending on the local environment of the difluoromethylene group and on the charge state, the distance between the bridgehead carbon atoms in difluoromethylenefullerenes changes from 1.7 Å to 2.3 Å, which is accompanied by transformation of the cyclopropane moiety to the bridging fragment. Methods of synthesis, the molecular and electronic structure, chemical properties, and potential application fields of difluoromethylenefullerenes are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Puente Santiago, O. Fernandez-Delgado, A. Gomez, M. A. Ahsan, L. Echegoyen, Angew. Chem., Int. Ed., 2021, 60, 122; DOI: https://doi.org/10.1002/anie.202009449.

    Article  CAS  Google Scholar 

  2. Y. Gu, Y. Liu, T. P. Russell, ChemPlusChem, 2020, 85, 751; DOI: https://doi.org/10.1002/cplu.202000082.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Zhang, I. Murtaza, H. Meng, J. Mater. Chem. C, 2018, 6, 3514; DOI: https://doi.org/10.1039/C7TC05079H.

    Article  CAS  Google Scholar 

  4. E. Castro, J. Murillo, O. Fernandez-Delgado, L. Echegoyen, J. Mater. Chem. C, 2018, 6, 2635; DOI: https://doi.org/10.1039/C7TC04302C.

    Article  CAS  Google Scholar 

  5. M. Yamada, T. Akasaka, S. Nagase, Chem. Rev., 2013, 113, 7209; DOI: https://doi.org/10.1021/cr3004955.

    Article  CAS  PubMed  Google Scholar 

  6. M. D. Tzirakis, M. Orfanopoulos, Chem. Rev., 2013, 113, 5262; DOI: https://doi.org/10.1021/cr300475r.

    Article  CAS  PubMed  Google Scholar 

  7. A. A. Popov, S. Yang, L. Dunsch, Chem. Rev., 2013, 113, 5989; DOI: https://doi.org/10.1021/cr300297r.

    Article  CAS  PubMed  Google Scholar 

  8. A. A. Goryunkov, N. S. Ovchinnikova, I. V. Trushkov, M. A. Yurovskaya, Russ. Chem. Rev., 2007, 76, 289; DOI: 1070/RC2007v076n04ABEH003668.

    Article  CAS  Google Scholar 

  9. O. V. Boltalina, A. A. Popov, I. V. Kuvychko, N. B. Shustova, S. H. Strauss, Chem. Rev., 2015, 115, 1051; DOI: https://doi.org/10.1021/cr5002595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V. Georgakilas, J. A. Perman, J. Tucek, R. Zboril, Chem. Rev., 2015, 115, 4744; DOI: https://doi.org/10.1021/cr500304f.

    Article  CAS  PubMed  Google Scholar 

  11. E. A. Khakina, P. A. Troshin, Russ. Chem. Rev., 2017, 86, 805; DOI: https://doi.org/10.1070/RCR4693.

    Article  CAS  Google Scholar 

  12. S. Yang, I. N. Ioffe, S. I. Troyanov, Acc. Chem. Res., 2019, 52, 1783; DOI: https://doi.org/10.1021/acs.accounts.9b00175.

    Article  CAS  PubMed  Google Scholar 

  13. N. G. Bichan, E. N. Ovchenkova, Russ. Chem. Bull., 2021, 70, 239; DOI: https://doi.org/10.1007/s11172-021-3081-y.

    Article  CAS  Google Scholar 

  14. E. W. Godly, R. Taylor, Pure Appl. Chem., 1997, 69, 1411; DOI: https://doi.org/10.1351/pac199769071411.

    Article  CAS  Google Scholar 

  15. W. Qian, S.-C. Chuang, R. B. Amador, T. Jarrosson, M. Sander, S. Pieniazek, S. I. Khan, Y. Rubin, J. Am. Chem. Soc., 2003, 125, 2066; DOI: https://doi.org/10.1021/ja029679s.

    Article  CAS  PubMed  Google Scholar 

  16. I. N. Ioffe, C. Chen, S. Yang, L. N. Sidorov, E. Kemnitz, S. I. Troyanov, Angew. Chem., Int. Ed., 2010, 49, 4784; DOI: https://doi.org/10.1002/anie.201001082.

    Article  CAS  Google Scholar 

  17. D. V. Ignat’eva, I. N. Ioffe, S. I. Troyanov, L. N. Sidorov, Russ. Chem. Rev., 2011, 80, 631; DOI: https://doi.org/10.1070/RC2011v080n07ABEH004195.

    Article  Google Scholar 

  18. W. H. Powell, F. Cozzi, G. P. Moss, C. Thilgen, R. J.-R. Hwu, A. Yerin, Pure Appl. Chem., 2002, 74, 629; DOI: https://doi.org/10.1351/pac200274040629.

    Article  CAS  Google Scholar 

  19. F. Cozzi, W. H. Powell, C. Thilgen, Pure Appl. Chem., 2005, 77, 843; DOI: https://doi.org/10.1351/pac200577050843.

    Article  CAS  Google Scholar 

  20. R. Ganesamoorthy, G. Sathiyan, P. Sakthivel, Sol. Energy Mater. Sol. Cells, 2017, 161, 102; DOI: https://doi.org/10.1016/j.solmat.2016.11.024.

    Article  CAS  Google Scholar 

  21. Y.-Y. Lai, Y.-J. Cheng, C.-S. Hsu, Energy Environ. Sci., 2014, 7, 1866; DOI: https://doi.org/10.1039/c3ee43080d.

    Article  CAS  Google Scholar 

  22. A. Muñoz, D. Sigwalt, B. M. Illescas, J. Luczkowiak, L. Rodríguez-Pérez, I. Nierengarten, M. Holler, J.-S. Remy, K. Buffet, S. P. Vincent, J. Rojo, R. Delgado, J.-F. Nierengarten, N. Martín, Nat. Chem., 2016, 8, 50; DOI: https://doi.org/10.1038/nchem.2387.

    Article  PubMed  Google Scholar 

  23. S. Marchesan, T. Da Ros, G. Spalluto, J. Balzarini, M. Prato, Bioorg. Med. Chem. Lett., 2005, 15, 3615; DOI: https://doi.org/10.1016/j.bmcl.2005.05.069.

    Article  CAS  PubMed  Google Scholar 

  24. A. Dellinger, Z. Zhou, J. Connor, A. B. Madhankumar, S. Pamujula, C. M. Sayes, C. L. Kepley, Nanomedicine, 2013, 8, 1191; DOI: https://doi.org/10.2217/nnm.13.99.

    Article  CAS  PubMed  Google Scholar 

  25. J.-J. Yin, F. Lao, P. P. Fu, W. G. Wamer, Y. Zhao, P. C. Wang, Y. Qiu, B. Sun, G. Xing, J. Dong, X.-J. Liang, C. Chen, Biomaterials, 2009, 30, 611; DOI: https://doi.org/10.1016/j.biomaterials.2008.09.061.

    Article  CAS  PubMed  Google Scholar 

  26. G.-J. A. H. Wetzelaer, P. W. M. Blom, J. Mater. Chem. C, 2021, 9, 16068; DOI: https://doi.org/10.1039/D1TC90228H.

    Article  CAS  Google Scholar 

  27. R. R. Søndergaard, M. Hösel, F. C. Krebs, J. Polym. Sci. B Polym. Phys., 2013, 51, 16; DOI: https://doi.org/10.1002/polb.23192.

    Article  Google Scholar 

  28. S. Sutty, G. Williams, H. Aziz, J. Photon. Energy, 2014, 4, 040999; DOI: https://doi.org/10.1117/1.JPE.4.040999.

    Article  CAS  Google Scholar 

  29. M. A. Yurovskaya, I. V. Trushkov, Russ. Chem. Bull., 2002, 51, 367; DOI: https://doi.org/10.1023/A:1015565600068.

    Article  CAS  Google Scholar 

  30. Y. N. Biglova, A. G. Mustafin, RSC Advances, 2019, 9(39), 22428; DOI: https://doi.org/10.1039/C9RA04036F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. Champeil, C. Crean, C. Larraya, G. Pescitelli, G. Proni, L. Ghosez, Tetrahedron, 2008, 64, 10319; DOI: https://doi.org/10.1016/j.tet.2008.08.017.

    Article  CAS  Google Scholar 

  32. N. F. Gol’dshleger, A. P. Moravskii, Russ. Chem. Rev., 1997, 66, 323; DOI: https://doi.org/10.1070/RC1997v066n04ABEH000291.

    Article  Google Scholar 

  33. H.-S. Lin, Y. Matsuo, Chem. Commun., 2018, 54, 11244; DOI: https://doi.org/10.1039/C8CC05965A.

    Article  CAS  Google Scholar 

  34. A. Hirsch, M. Brettreich, Fullerenes: Chemistry and Reactions, Wiley-VCH, Verlag GmbH & Co KGaA, Weinheim, 2005, 423 p.; DOI: https://doi.org/10.1021/ja059725z.

    Google Scholar 

  35. L. N. Sidorov, M. A. Yurovskaya, A. Ya. Borshchevsky, I. V. Trushkov, I. N. Ioffe, Fullereny [Fullerenes], Ekzamen, Moscow, 2004, 687 pp. (in Russian).

    Google Scholar 

  36. P. A. Troshin, R. N. Lyubovskaya, Russ. Chem. Rev., 2008, 77, 305; DOI: https://doi.org/10.1070/RC2008v077n04ABEH003770.

    Article  CAS  Google Scholar 

  37. R. Taylor, Phys. Chem. Chem. Phys., 2004, 6, 328; DOI: https://doi.org/10.1039/B312502P.

    Article  CAS  Google Scholar 

  38. T. Kitagawa, K. Takeuchi, Bull. Chem. Soc. Jpn., 2001, 74, 785; DOI: https://doi.org/10.1246/bcsj.74.785.

    Article  CAS  Google Scholar 

  39. Y. Hu, A. Solé-Daura, Y.-R. Yao, X. Liu, S. Liu, A. Yu, P. Peng, J. M. Poblet, A. Rodríguez-Fortea, L. Echegoyen, F.-F. Li, Chem.—Eur. J., 2020, 26, 1748; DOI: https://doi.org/10.1002/chem.201904854.

    Article  CAS  PubMed  Google Scholar 

  40. L. Ni, W. Chang, H.-L. Hou, Z.-J. Li, X. Gao, Org. Biomol. Chem., 2011, 9, 6646; DOI: https://doi.org/10.1039/c1ob05809f.

    Article  CAS  PubMed  Google Scholar 

  41. S.-H. Li, Z.-J. Li, W.-W. Yang, X. Gao, J. Org. Chem., 2013, 78, 7208; DOI: https://doi.org/10.1021/jo4011848.

    Article  CAS  PubMed  Google Scholar 

  42. A. J. Clancy, M. K. Bayazit, S. A. Hodge, N. T. Skipper, C. A. Howard, M. S. P. Shaffer, Chem. Rev., 2018, 118, 7363; DOI: https://doi.org/10.1021/acs.chemrev.8b00128.

    Article  CAS  PubMed  Google Scholar 

  43. J. Nossal, R. K. Saini, L. B. Alemany, M. Meier, W. E. Billups, Eur. J. Org. Chem., 2001, 4167; DOI: https://doi.org/10.1002/1099-0690(200111)2001:22<4167::AID-EJOC4167>3.0.CO;2-Y.

  44. Z. Wang, M. S. Meier, J. Org. Chem., 2004, 69, 2178; DOI: https://doi.org/10.1021/jo030242s.

    Article  CAS  PubMed  Google Scholar 

  45. Y. Yang, C. Niu, M. Chen, S. Yang, G.-W. Wang, Org. Biomol. Chem., 2020, 18, 4783; DOI: https://doi.org/10.1039/D0OB00876A.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Xiao, S.-E. Zhu, D.-J. Liu, M. Suzuki, X. Lu, G.-W. Wang, Angew. Chem., Int. Ed., 2014, 53, 3006; DOI: https://doi.org/10.1002/anie.201310565.

    Article  CAS  Google Scholar 

  47. H.-L. Hou, Z.-J. Li, Y. Wang, X. Gao, J. Org. Chem., 2014, 79, 8865; DOI: https://doi.org/10.1021/jo5019238.

    Article  CAS  PubMed  Google Scholar 

  48. H.-S. Lin, Y. Matsuo, J.-J. Wang, G.-W. Wang, Org. Chem. Front., 2017, 4, 603; DOI: https://doi.org/10.1039/C6QO00654J.

    Article  CAS  Google Scholar 

  49. C. Niu, B. Li, Z.-C. Yin, S. Yang, G.-W. Wang, Org. Lett., 2019, 21, 7346; DOI: https://doi.org/10.1021/acs.orglett.9b02635.

    Article  CAS  PubMed  Google Scholar 

  50. H.-S. Lin, I. Jeon, Y. Chen, X.-Y. Yang, T. Nakagawa, S. Maruyama, S. Manzhos, Y. Matsuo, Chem. Mater., 2019, 31, 8432; DOI: https://doi.org/10.1021/acs.chemmater.9b02468.

    Article  CAS  Google Scholar 

  51. Y. Ma, H. Ueno, H. Okada, S. Manzhos, Y. Matsuo, Org. Lett., 2020, 22, 7239; DOI: https://doi.org/10.1021/acs.orglett.0c02570.

    Article  CAS  PubMed  Google Scholar 

  52. W. I. F. David, R. M. Ibberson, J. C. Mathewman, K. Prassides, T. J. Dennis, J. P. Hare, H. W. Kroto, R. Taylor, D. R. M. Walton, Nature, 1991, 353, 147; DOI: https://doi.org/10.1038/353147a0.

    Article  CAS  Google Scholar 

  53. S. I. Troyanov, Russ. J. Inorg. Chem., 2001, 46, 1612.

    Google Scholar 

  54. M. V. Reinov, M. A. Yurovskaya, Russ. Chem. Rev., 2007, 76, 715; DOI: https://doi.org/10.1070/RC2007v076n08ABEH003695.

    Article  CAS  Google Scholar 

  55. A. S. Pimenova, A. A. Kozlov, A. A. Goryunkov, V. Yu. Markov, P. A. Khavrel, S. M. Avdoshenko, I. N. Ioffe, S. G. Sakharov, S. I. Troyanov, L. N. Sidorov, Chem. Commun., 2007, 374; DOI: https://doi.org/10.1039/b611623j.

  56. A. S. Pimenova, A. A. Kozlov, A. A. Goryunkov, V. Yu. Markov, P. A. Khavrel, S. M. Avdoshenko, V. A. Vorobiev, I. N. Ioffe, S. G. Sakharov, S. I. Troyanov, L. N. Sidorov, Dalton Trans., 2007, 5322; DOI: https://doi.org/10.1039/b708167g.

  57. N. A. Samoylova, N. M. Belov, V. A. Brotsman, I. N. Ioffe, N. S. Lukonina, V. Yu. Markov, A. Ruff, A. V. Rybalchenko, P. Schuler, O. O. Semivrazhskaya, B. Speiser, S. I. Troyanov, T. V. Magdesieva, A. A. Goryunkov, Chem. — Eur. J., 2013, 19, 17969; DOI: https://doi.org/10.1002/chem.201302946.

    Article  CAS  PubMed  Google Scholar 

  58. V. A. Brotsman, N. S. Lukonina, N. A. Malkin, A. V. Rybalchenko, N. M. Belov, A. A. Goryunkov. Phys. Chem. Chem. Phys., 2022, 24, 16816; DOI: https://doi.org/10.1039/D2CP01922A.

    Article  CAS  PubMed  Google Scholar 

  59. A. V. Rybalchenko, M. G. Apenova, O. O. Semivrazhskaya, N. M. Belov, V. Yu. Markov, S. I. Troyanov, I. N. Ioffe, N. S. Lukonina, L. N. Sidorov, T. V. Magdesieva, A. A. Goryunkov, Electrochim. Acta, 2016, 191, 980; DOI: https://doi.org/10.1016/j.electacta.2016.01.125.

    Article  CAS  Google Scholar 

  60. G. Schick, A. Hirsch, H. Mauser, T. Clark, Chem. — Eur. J., 1996, 2, 935; DOI: https://doi.org/10.1002/chem.19960020807.

    Article  CAS  Google Scholar 

  61. N. S. Lukonina, O. O. Semivrazhskaya, M. G. Apenova, N. M. Belov, S. I. Troyanov, A. A. Goryunkov, Asian J. Org. Chem., 2019, 8, 1924; DOI: https://doi.org/10.1002/ajoc.201900475.

    Article  CAS  Google Scholar 

  62. A. D. Pykhova, O. O. Semivrazhskaya, N. A. Samoylova, A. V. Rybalchenko, M. Rosenkranz, I. N. Ioffe, A. A. Popov, A. A. Goryunkov, Dalton Trans., 2020, 49, 9137; DOI: https://doi.org/10.1039/D0DT01513J.

    Article  CAS  PubMed  Google Scholar 

  63. A. D. Pykhova, O. O. Semivrazhskaya, N. A. Samoylova, A. A. Popov, I. N. Ioffe, A. A. Goryunkov, Dalton Trans., 2022, 51, 1182; DOI: https://doi.org/10.1039/D1DT04031F.

    Article  CAS  PubMed  Google Scholar 

  64. V. Rautenstrauch, H.-J. Scholl, E. Vogel, Angew. Chem., Int. Ed., 1968, 7, 288. DOI: https://doi.org/10.1002/anie.196802881.

    Article  CAS  Google Scholar 

  65. R. Shimshi, A. Khong, H. A. Jiménez-Vázcuez, R. J. Cross, M. Saunders, Tetrahedron, 1996, 52, 5143; DOI: https://doi.org/10.1016/0040-4020(96)00120-2.

    Article  CAS  Google Scholar 

  66. H. A. Bent, Chem. Rev., 1961, 61, 275; DOI: https://doi.org/10.1021/cr60211a005.

    Article  CAS  Google Scholar 

  67. J. Feng, F. Li, P. Jin, Y. Liao, Z. Chen, J. Theor. Comput. Chem., 2013, 12, 1250097/1; DOI: https://doi.org/10.1142/S0219633612500976.

    Article  Google Scholar 

  68. V. P. Bogdanov, O. O. Semivrazhskaya, N. M. Belov, S. I. Troyanov, V. Yu. Markov, I. N. Ioffe, E. Kemnitz, A. A. Goryunkov, Eur. J. Chem., 2016, 22, 15485; DOI: https://doi.org/10.1002/chem.201602351.

    Article  CAS  Google Scholar 

  69. A. A. Goryunkov, E. S. Kornienko, T. V. Magdesieva, A. A. Kozlov, V. A. Vorobiev, S. M. Avdoshenko, I. N. Ioffe, O. M. Nikitin, V. Yu. Markov, P. A. Khavrel, A. Kh. Vorobiev, L. N. Sidorov, Dalton Trans., 2008, 6886; DOI: https://doi.org/10.1039/b809957j.

  70. Y. Zhang, Y. Matsuo, C.-Z. Li, H. Tanaka, E. Nakamura, J. Am. Chem. Soc., 2011, 133, 8086; DOI: https://doi.org/10.1021/ja201267t.

    Article  CAS  PubMed  Google Scholar 

  71. F.-F. Li, A. Villalta-Cerdas, L. E. Echegoyen, L. Echegoyen, in Organic Nanomaterials, Eds T. Torres, G. Bottari, John Wiley & Sons, Inc., Hoboken, 2013, p. 259; DOI: https://doi.org/10.1002/9781118354377.ch13.

  72. M. Keshavarz-K, B. Knight, R. C. Haddon, F. Wudl, Tetrahedron, 1996, 52, 5149; DOI: https://doi.org/10.1016/0040-4020(96)00121-4.

    Article  CAS  Google Scholar 

  73. V. A. Brotsman, V. A. Ioutsi, A. V. Rybalchenko, V. P. Bogdanov, S. A. Sokolov, N. M. Belov, N. S. Lukonina, V. Yu. Markov, I. N. Ioffe, S. I. Troyanov, T. V. Magdesieva, V. A. Trukhanov, D. Yu. Paraschuk, A. A. Goryunkov, Electrochim. Acta, 2016, 219, 130; DOI: https://doi.org/10.1016/j.electacta.2016.09.106.

    Article  CAS  Google Scholar 

  74. V. P. Bogdanov, V. A. Dmitrieva, A. V. Rybalchenko, T. S. Yankova, M. P. Kosaya, N. A. Romanova, N. M. Belov, N. E. Borisova, S. I. Troyanov, A. A. Goryunkov, Eur. J. Org. Chem., 2021, 5147; DOI: https://doi.org/10.1002/ejoc.202101069.

  75. B. J. Reeves, C. P. Brook, O. Gerdes, S. H. M. Deng, Q. Yuan, X. Wang, S. H. Strauss, O. V. Boltalina, K. Walzer, Solar RRL, 2019; DOI: https://doi.org/10.1002/solr.201900070.

  76. X.-B. Wang, H.-K. Woo, L.-S. Wang, J. Chem. Phys., 2005, 123, 051106; DOI: https://doi.org/10.1063/1.1998787.

    Article  PubMed  Google Scholar 

  77. B. W. Larson, J. B. Whitaker, X.-B. Wang, A. A. Popov, G. Rumbles, N. Kopidakis, S. H. Strauss, O. V. Boltalina, J. Phys. Chem. C, 2013, 117, 14958; DOI: https://doi.org/10.1021/jp403312g.

    Article  CAS  Google Scholar 

  78. A. V. Rybalchenko, T. V. Magdesieva, V. A. Brotsman, N. M. Belov, V. Yu. Markov, I. N. Ioffe, A. Ruff, P. Schuler, B. Speiser, J. Heinze, L. N. Sidorov, A. A. Goryunkov, Electrochim. Acta, 2015, 174, 143; DOI: https://doi.org/10.1016/j.electacta.2015.05.117.

    Article  CAS  Google Scholar 

  79. T. Sternfeld, F. Wudl, K. Hummelen, A. Weitz, R. C. Haddon, M. Rabinovitz, Chem. Commun., 1999, 2411; DOI: https://doi.org/10.1039/A907604B.

  80. C. A. Reed, R. D. Bolskar, Chem. Rev., 2000, 100, 1075; DOI: https://doi.org/10.1021/cr980017o.

    Article  CAS  PubMed  Google Scholar 

  81. W. H. Green, S. M. Gorun, G. Fitzgerald, P. W. Fowler, A. Ceulemans, B. C. Titeca, J. Phys. Chem., 1996, 100, 14892; DOI: https://doi.org/10.1021/jp960689n.

    Article  CAS  Google Scholar 

  82. P. Paul, Z. Xie, R. Bau, P. D. W. Boyd, C. A. Reed, J. Am. Chem. Soc., 1994, 116, 4145; DOI: https://doi.org/10.1021/ja00088a087.

    Article  CAS  Google Scholar 

  83. D. V. Konarev, A. V. Kuźmin, S. V. Simonov, S. S. Khasanov, E. I. Yudanova, R. N. Lyubovskaya, Dalton Trans., 2011, 40, 4453; DOI: https://doi.org/10.1039/c1dt10039d.

    Article  CAS  PubMed  Google Scholar 

  84. M. Tsuda, T. Ishida, T. Nogami, S. Kurono, M. Ohashi, Tetrahedron Lett., 1993, 34, 6911; DOI: https://doi.org/10.1016/S0040-4039(00)91828-8.

    Article  CAS  Google Scholar 

  85. T. Ishida, T. Furudate, T. Nogami, M. Kubota, T. Hirano, M. Ohashi, Fuller. Nanotub. Carb. Nanostr., 1995, 3, 399; DOI: https://doi.org/10.1080/153638X9508543794.

    CAS  Google Scholar 

  86. A. M. Benito, A. D. Darwish, H. W. Kroto, M. F. Meidine, R. Taylor, D. R. M. Walton, Tetrahedron Lett., 1996, 37, 1085; DOI: https://doi.org/10.1016/0040-4039(95)02256-2.

    Article  CAS  Google Scholar 

  87. M. Mąkosza, M. Fedoryński, Russ. Chem. Bull., 2021, 70, 2045; DOI: https://doi.org/10.1007/s11172-021-3317-x.

    Article  Google Scholar 

  88. Z. Yinghuai, J. Phys. Chem. Solids, 2004, 65, 349; DOI: https://doi.org/10.1016/j.jpcs.2003.08.027.

    Article  Google Scholar 

  89. J. Osterodt, F. Vögtle, Chem. Commun., 1996, 547; DOI: https://doi.org/10.1039/CC9960000547.

  90. A. F. Kiely, R. C. Haddon, M. S. Meier, J. P. Selegue, C. P. Brock, B. O. Patrick, G.-W. Wang, Y. Chen, J. Am. Chem. Soc., 1999, 121, 7971; DOI: https://doi.org/10.1021/ja991692y.

    Article  CAS  Google Scholar 

  91. A. F. Kiely, M. S. Meier, B. O. Patrick, J. P. Selegue, C. P. Brock, Helv. Chim. Acta, 2003, 86, 1140; DOI: https://doi.org/10.1002/hlca.200390099.

    Article  CAS  Google Scholar 

  92. H. E. Bronstein, L. T. Scott, J. Org. Chem., 2008, 73, 88; DOI: https://doi.org/10.1021/jo7018224.

    Article  CAS  PubMed  Google Scholar 

  93. H. Hu, B. Zhao, M. A. Hamon, K. Kamaras, M. E. Itkis, R. C. Haddon, J. Am. Chem. Soc., 2003, 125, 14893; DOI: https://doi.org/10.1021/ja0356737.

    Article  CAS  PubMed  Google Scholar 

  94. E. B. Iezzi, J. C. Duchamp, K. Harich, T. E. Glass, H. M. Lee, M. M. Olmstead, A. L. Balch, H. C. Dorn, J. Am. Chem. Soc., 2002, 124, 524; DOI: https://doi.org/10.1021/ja0171005.

    Article  CAS  PubMed  Google Scholar 

  95. C. M. Cardona, A. Kitaygorodskiy, L. Echegoyen, J. Am. Chem. Soc., 2005, 127, 10448; DOI: https://doi.org/10.1021/ja052153y.

    Article  CAS  PubMed  Google Scholar 

  96. D. L. S. Brahms, W. P. Dailey, Chem. Rev., 1996, 96, 1585; DOI: https://doi.org/10.1021/cr941141k.

    Article  CAS  PubMed  Google Scholar 

  97. J. Hine, D. C. Duffey, J. Am. Chem. Soc., 1959, 81, 1131; DOI: https://doi.org/10.1021/ja01514a030.

    Article  CAS  Google Scholar 

  98. D. J. Burton, G. A. Wheaton, J. Am. Chem. Soc., 1974, 96, 6787; DOI: https://doi.org/10.1021/ja00828a055.

    Article  CAS  Google Scholar 

  99. M. Fedoryński, Chem. Rev., 2003, 103, 1099; DOI: https://doi.org/10.1021/cr0100087.

    Article  PubMed  Google Scholar 

  100. D. E. Yerien, S. Barata-Vallejo, A. Postigo, Chem. — Eur. J., 2017, 23, 14676; DOI: https://doi.org/10.1002/chem.201702311.

    Article  CAS  PubMed  Google Scholar 

  101. X. Gao, K. Ishimura, S. Nagase, Z. Chen, J. Phys. Chem. A, 2009, 113, 3673; DOI: https://doi.org/10.1021/jp900265g.

    Article  CAS  PubMed  Google Scholar 

  102. M. G. Apenova, V. A. Akhmetov, N. M. Belov, A. A. Goryunkov, I. N. Ioffe, N. S. Lukonina, V. Yu. Markov, L. N. Sidorov, Chem. Asian J., 2014, 9, 915; DOI: https://doi.org/10.1002/asia.201301413.

    Article  CAS  PubMed  Google Scholar 

  103. V. P. Bogdanov, V. A. Dmitrieva, V. A. Ioutsi, N. M. Belov, A. A. Goryunkov, J. Fluorine Chem., 2019, 109344; DOI: https://doi.org/10.1016/j.jfluchem.2019.109344.

  104. R. G. Pearson, J. Chem. Educ., 1968, 45, 643; DOI: https://doi.org/10.1021/ed045p643.

    Article  CAS  Google Scholar 

  105. R. N. Haszeldine, J. Chem. Soc., 1954, 1273; DOI: https://doi.org/10.1039/JR9540001273.

  106. Y. Chang, C. Cai, J. Fluorine Chem., 2005, 126, 937; DOI: https://doi.org/10.1016/j.jfluchem.2005.04.012.

    Article  CAS  Google Scholar 

  107. A. Lishchynskyi, M. A. Novikov, E. Martin, E. C. Escudero-Adán, P. Novák, V. V. Grushin, J. Org. Chem., 2013, 78, 11126; DOI: https://doi.org/10.1021/jo401423h.

    Article  CAS  PubMed  Google Scholar 

  108. G. K. S. Prakash, F. Wang, Z. Zhang, R. Haiges, M. Rahm, K. O. Christe, T. Mathew, G. A. Olah, Angew. Chem., Int. Ed., 2014, 53, 11575; DOI: https://doi.org/10.1002/anie.201406505.

    Article  CAS  Google Scholar 

  109. A. A. Peera, L. B. Alemany, W. E. Billups, Appl. Phys. Part. A, 2004, 78, 995; DOI: https://doi.org/10.1007/s00339-003-2420-1.

    Article  CAS  Google Scholar 

  110. M. S. Meier, R. G. Bergosh, M. E. Gallagher, H. P. Spielmann, Z. Wang, J. Org. Chem., 2002, 67, 5946; DOI: https://doi.org/10.1021/jo020216e.

    Article  CAS  PubMed  Google Scholar 

  111. D. E. U. Ekong, J. I. Okogun, B. L. Sondengam, J. Chem. Soc., Perkin Trans. 1, 1975, 2118; DOI: https://doi.org/10.1039/P19750002118.

  112. S. D. Rychnovsky, J. P. Powers, in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, Chichester, 2001; DOI: https://doi.org/10.1002/047084289X.rz011.

    Google Scholar 

  113. H. P. Spielmann, G.-W. Wang, M. S. Meier, B. R. Weedon, J. Org. Chem., 1998, 63, 9865; DOI: https://doi.org/10.1021/jo981627r.

    Article  CAS  Google Scholar 

  114. R. G. Bergosh, M. S. Meier, J. A. Laske Cooke, H. P. Spielmann, B. R. Weedon, J. Org. Chem., 1997, 62, 7667; DOI: https://doi.org/10.1021/jo970878h.

    Article  CAS  Google Scholar 

  115. D. Dubois, K. M. Kadish, S. Flanagan, R. E. Haufler, L. P. F. Chibante, L. J. Wilson, J. Am. Chem. Soc., 1991, 113, 4364; DOI: https://doi.org/10.1021/ja00011a069.

    Article  CAS  Google Scholar 

  116. M. E. Niyazymbetov, D. H. Evans, S. A. Lerke, P. A. Cahill, C. C. Henderson, J. Phys. Chem., 1994, 98, 13093; DOI: https://doi.org/10.1021/j100100a045.

    Article  CAS  Google Scholar 

  117. V. A. Brotsman, V. P. Bogdanov, A. V. Rybalchenko, E. P. Galanicheva, N. M. Belov, V. Yu. Markov, N. S. Lukonina, I. N. Ioffe, S. I. Troyanov, E. Kemnitz, A. A. Goryunkov, Chem. Asian J., 2016, 11, 1945; DOI: https://doi.org/10.1002/asia.201600491.

    Article  CAS  PubMed  Google Scholar 

  118. V. P. Bogdanov, V. A. Brotsman, N. M. Belov, A. V. Rybalchenko, V. Yu. Markov, S. I. Troyanov, A. A. Goryunkov, Chem. Asian J., 2020, 15, 1701; DOI: https://doi.org/10.1002/asia.202000320.

    Article  CAS  PubMed  Google Scholar 

  119. S. Fukuzumi, T. Suenobu, T. Hirasaka, R. Arakawa, K. M. Kadish, J. Am. Chem. Soc., 1998, 120, 9220; DOI: https://doi.org/10.1021/ja9815430.

    Article  CAS  Google Scholar 

  120. J. M. Saveánt, J. Am. Chem. Soc., 1987, 109, 6788; DOI: https://doi.org/10.1021/ja00256a037.

    Article  Google Scholar 

  121. S. M. Avdoshenko, I. N. Ioffe, A. A. Kozlov, V. Yu. Markov, E. N. Nikolaev, L. N. Sidorov, Rapid Commun. Mass Spectr., 2008, 22, 1372; DOI: https://doi.org/10.1002/rcm.3508.

    Article  CAS  Google Scholar 

  122. R. K. Radha Krishnan, B. J. Reeves, S. H. Strauss, O. V. Boltalina, B. Lüssem, Org. Electronics, 2020, 86, 105898; DOI: https://doi.org/10.1016/j.orgel.2020.105898.

    Article  CAS  Google Scholar 

  123. Patent RU 2708398, Inventor’s Bull., No. 34, 2019; date of publication 06.12.2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Goryunkov.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 21-73-20068).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Goryunkov Alexey Anatolyevich, born 1979, Doctor of Science (Chem.), Head of the Laboratory of Thermochemistry at the Department of Chemistry, Lomonosov Moscow State University (MSU), candidate for Professor at the Russian Academy of Sciences in 2022. He is a specialist in the field of chemistry and physicochemical properties of carbon nanostructures, Chairman of a Dissertation Council at Lomonosov MSU, a member of the Scientific Council at the Department of Chemistry, Lomonosov MSU, a member of Editorial Boards of Russian Journal of Physical Chemistry A and Bulletin of Bashkir University. A. A. Goryunkov is the author of 92 publications and two patents; seven PhD theses were defended under his supervision.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 20–41, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brotsman, V.A., Lukonina, N.S. & Goryunkov, A.A. Chemistry of difluoromethylenefullerenes. Russ Chem Bull 72, 20–41 (2023). https://doi.org/10.1007/s11172-023-3712-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3712-6

Key words

Navigation