Skip to main content
Log in

Synthesis and study of water-soluble asymmetric cationic porphyrins as potential photoinactivators of pathogens

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Water-soluble asymmetrically substituted porphyrins containing the heterocyclic fragments (benzoxazole, N-methylbenzimidazole, and benzothiazole residues) at the periphery of the porphyrin ring were synthesized using the C-H-activation method. The compounds were identified by electron absorption spectroscopy, 1H NMR spectroscopy, and mass spectrometry. The quantum yields of singlet oxygen generation and complexation ability of the synthesized porphyrins with respect to albumin were determined. The affinity of albumin to the porphyrins with the N-methylbenzimidazole and benzoxazole residues was shown to be nearly two times higher than the affinity to the porphyrin with the benzothiazole fragment. The synthesized porphyrins can efficiently interact with proteins. The bactericidal activity of the synthesized porphyrins to archival strains of microorganisms was studied. The lytic activity for gram-positive Staphylococcus spp. bacteria under photoirradiation conditions was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. H. Rammelkamp, T. Maxon, Proc. Soc. Exp. Biol. Med., 1942, 51, 386; DOI: https://doi.org/10.3181/00379727-51-13986.

    Article  CAS  Google Scholar 

  2. W. G. Goettsch, A. J. de Neeling, EARSS; data from the Netherlands (1999), Incidence and resistance rates for Streptococcus pneumoniae and Staphylococcus aureus, 2001.

  3. W. Witte, M. Mielke, Zentralblatt für Chirurgie, 2007, 132, 124; DOI: https://doi.org/10.1055/s-2007-960652.

    Article  CAS  PubMed  Google Scholar 

  4. H. V. Tappeiner, DMW, 1904, 30, 579.

    Article  Google Scholar 

  5. H. V. Tappeiner, A. Jodlbauer, Dtsch. Arch. Klin. Med., 1904, 80, 427.

    Google Scholar 

  6. S. Schastak, S. Ziganshyna, B. Gitter, P. Wiedemann, T. Claudepierre, PloS ONE, 2010, 5, e11674; DOI: https://doi.org/10.1371/journal.pone.0011674.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Y. Liu, R. Qin, S. A. J. Zaat, E. Breukink, M. Heger, J. Clin. Translat. Res., 2015, 1, 140; DOI: https://doi.org/10.18053/jctres.201503.002.

    Google Scholar 

  8. M. Hamblin, Curr. Opin. Microbiol., 2016, 33, 67; DOI: https://doi.org/10.1016/j.mib.2016.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. V. Kustov, T. V. Kustova, D. V. Belykh, I. S. Khudyaeva, D. B. Berezin, Dyes Pigm., 2020, 173, 107948; DOI: https://doi.org/10.1016/j.dyepig.2019.107948.

    Article  CAS  Google Scholar 

  10. D. B. Berezin, V. V. Makarov, S. A. Znoyko, V. E. Mayzlish, A. V. Kustov, Mendeleev Commun., 2020, 30, 621; DOI: https://doi.org/10.1016/j.mencom.2020.09.023.

    Article  CAS  Google Scholar 

  11. I. J. Macdonald, T. J. Dougherty, J. Porphyr. Phthalocyanine, 2001, 5, 105; DOI: https://doi.org/10.1002/jpp.348.

    Article  CAS  Google Scholar 

  12. M. R. Hamblin, T. Hasan, Photochem. Photobiol. Sci., 2004, 3, 436; DOI: https://doi.org/10.1039/B311900A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. M. Dabrowski, Adv. Inorg. Chem., 2017, 70, 343; DOI: https://doi.org/10.1016/bs.adioch.2017.03.002.

    Article  CAS  Google Scholar 

  14. A. V. Kustov, Ph. K. Morshnev, N. V. Kukushkina, M. A. Krestyaninov, N. L. Smirnova, D. B. Berezin, G. N. Kokurina, D. V. Belykh, Comptes Rendus Chimie, 2022, 25, 97; DOI: https://doi.org/10.5802/crchim.158.

    Article  CAS  Google Scholar 

  15. M. Wainwright, K. B. Crossley, Int. Biodeter. Biodegr., 2004, 53, 119; DOI: https://doi.org/10.1016/j.ibiod.2003.11.006.

    Article  CAS  Google Scholar 

  16. N. S. Lebedeva, Y. A. Gubarev, M. O. Koifman, O. I. Koifman, Molecules, 2020, 25, 4368; DOI: https://doi.org/10.3390/molecules25194368.

    Article  CAS  PubMed Central  Google Scholar 

  17. N. Sh. Lebedeva, O. I. Koifman, Russ. J. Bioorg. Chem., 2022, 48, 1; DOI: https://doi.org/10.1134/S1068162022010071.

    Article  CAS  Google Scholar 

  18. D. A. Polivanovskaia, K. P. Birin, A. A. Averin, Yu. G. Gorbunova, A. Yu. Tsivadze, Russ. Chem. Bull., 2021, 70, 2100; DOI: https://doi.org/10.1007/s11172-021-3321-1.

    Article  CAS  Google Scholar 

  19. O. I. Nikolaeva, T. A. Ageeva, O. I. Koifman, Russ. Chem. Bull., 2021, 70, 2100; DOI: https://doi.org/10.1007/s11172-021-3288-y.

    Article  Google Scholar 

  20. K. M. Craft, J. M. Nguyen, L. J. Berg, S. D. Townsend, Med. Chem. Comm., 2019, 10, 1231; DOI: https://doi.org/10.1039/C9MD00044E.

    Article  CAS  Google Scholar 

  21. N. Ahmad-Mansour, P. Loubet, C. Pouget, C. Dunyach-Remy, A. Sotto, J. P. Lavigne, V. Molle, Toxins, 2021, 13, 677; DOI: https://doi.org/10.3390/toxins13100677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Singh, A. Amod, P. Pandey, P. Bose, M. S. Pingali, S. Shivalkar, P. K. Varadwaj, A. K. Sahoo, S. K. Samanta, Biomed. Mater., 2022, 17, 022003; DOI: https://doi.org/10.1088/1748-605X/ac50f6.

    Article  Google Scholar 

  23. H. Rohde, C. Burdelski, K. Bartscht, M. Hussain, F. Buck, M. A. Horstkotte, J. K.-M. Knobloch, Ch. Heilmann, M. Herrmann, D. Mack, Mol. Microbiol., 2005, 55, 1883; DOI: https://doi.org/10.1111/j.1365-2958.2005.04515.x.

    Article  CAS  PubMed  Google Scholar 

  24. P. Speziale, G. Pietrocola, T. J. Foster, J. A. Geoghegan, Front. Cell. Infect. Microbiol., 2014, 4, 171; DOI: https://doi.org/10.3389/fcimb.2014.00171.

    Article  PubMed  PubMed Central  Google Scholar 

  25. T. J. Foster, J. A. Geoghegan, V. K. Ganesh, M. Hook, Nat. Rev. Microbiol., 2014, 12, 49; DOI: https://doi.org/10.1038/nrmicro3161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. N. P. Hammer, E. P. Skaar, Annu. Rev. Microbiol., 2011, 65, 129; DOI: https://doi.org/10.1146/annurev-micro-090110-102851.

    Article  CAS  PubMed  Google Scholar 

  27. J. S. Lindsey, H. C. Hsu, I. C. Schreiman, Tetrahedron Lett., 1986, 27, 4969; DOI: https://doi.org/10.1016/S0040-4039(00)85109-6.

    Article  CAS  Google Scholar 

  28. A. D. Adler, F. R. Longo, W. Shergalis, J. Am. Chem. Soc., 1964, 86, 3145; DOI: https://doi.org/10.1021/ja01069a035.

    Article  CAS  Google Scholar 

  29. D. Gust, T. A. Moore, A. L. Moore, L. Leggett, S. Lin, J. M. DeGraziano, R. M. Hermant, D. Nicodem, P. Craig, J. Phys. Chem., 1993, 97, 7926; DOI: https://doi.org/10.1021/j100132a021.

    Article  CAS  Google Scholar 

  30. Handbook of C-H Transformations: Applications in Organic Synthesis, Ed. G. Dyker, Wiley-VCH, 2005, 688 pp.

  31. A. N. Kiselev, S. A. Syrbu, N. Sh. Lebedeva, Y. A. Gubarev, Inorganics, 2022, 10, 63; DOI: https://doi.org/10.3390/inorganics10050063.

    Article  CAS  Google Scholar 

  32. A. S. Semeykin, S. A. Syrbu, O. I. Koifman, in Chemical Processes with Participation of Biological and Related Compounds, Eds T. N. Lomova, G. E. Zaikov, CRC Press, London, 2008, p. 45.

  33. A. B. Ormond, H. S. Freeman, Dyes Pigm., 2013, 96, 440; DOI: https://doi.org/10.1016/j.dyepig.2012.09.011.

    Article  CAS  Google Scholar 

  34. V. V. Sokolov, V. I. Chissov, E. V. Filonenko, R. I. Yakubovskaya, G. M. Sukhin, M. G. Galpern, G. N. Vorozhtsov, A. V. Gulin, M. B. Zhitkova, N. N. Zharkova, D. N. Kozlov, V. V. Smirnov, in Photodynamic Therapy of Cancer II: Proc. of SPIE, 1995, 2325, 364; DOI: https://doi.org/10.1117/12.199168.

    Google Scholar 

  35. T. J. Foster, J. A. Geoghegan, V. K. Ganesh, M. Hook, Nat. Rev. Microbiol., 2014, 12, 49; DOI: https://doi.org/10.1038/nrmicro3161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. U. Sjöbring, L. Björck, W. Kastern, J. Biol. Chem., 1991, 266, 399; DOI: https://doi.org/10.1016/S0021-9258(18)52448-0.

    Article  PubMed  Google Scholar 

  37. N. Sh. Lebedeva, E. S. Yurina, M. A. Lebedev, A. N. Kiselev, S. A. Syrbu, Yu. A. Gubarev, Makrogeterotsikly [Macroheterocycles], 2021, 14, 342; DOI: https://doi.org/10.6060/mhc214031g.

    CAS  Google Scholar 

  38. N. S. Lebedeva, Y. A. Gubarev, O. I. Koifman, Mendeleev Commun., 2015, 25, 307; DOI: https://doi.org/10.1016/j.mencom.2015.07.027.

    Article  CAS  Google Scholar 

  39. N. S. Lebedeva, Y. A. Gubarev, E. S. Yurina, S. A. Syrbu, J. Mol. Liq., 2018, 265, 664; DOI: https://doi.org/10.1016/j.molliq.2018.06.030.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Yurina.

Additional information

Based on the materials of the VI North Caucasus Symposium on Organic Chemistry NCOCS-2022 (April 18–22, 2022, Stavropol, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2691–2700, December, 2022.

A part of research was carried out using resources of the Center for Collective Use “New Materials and Resource Saving Technologies” (Nizhny Novgorod) and equipment of the Center for Collective Use at the Ivanovo State University of Chemistry and Technology (Ivanovo).

This work was financially supported by the Russian Science Foundation (Project No. 21-73-20140).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, A.N., Lebedev, M.A., Syrbu, S.A. et al. Synthesis and study of water-soluble asymmetric cationic porphyrins as potential photoinactivators of pathogens. Russ Chem Bull 71, 2691–2700 (2022). https://doi.org/10.1007/s11172-022-3698-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3698-5

Keywords

Navigation