Skip to main content
Log in

Synthesis and study of antiplatelet and antithrombotic activity of 4-substituted pyroglutamic acids

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of (2S,4S)-4-amino-N-arylpyroglutamic acids was first obtained by the nucleophilic substitution of bromine atom in dimethyl (2S,4RS)-4-bromo-N-phthaloylglutamate under the action of primary arylamines, followed by the separation of diastereomers and removal of protecting groups by acidic hydrolysis. These compounds were studied for anti-platelet and antithrombotic activity in experiments in vitro and in vivo. Some compounds were identified as exhibiting a significant effect on platelet function, which was manifested in slowing down the process of thrombus formation in the model of arterial and deep vein thrombosis. It was established that the most efficient compound is (2S,4S)-4-amino-N-(4-fluoro-phenyl)pyroglutamic acid, with its effect being comparable to that of acetylsalicylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. M. Field, M. F. Hazinski, M. R. Sayre, L. Chameides, S. M. Schexnayder, R. Hemphill, R. A. Samson, J. Kattwinkel, R. A. Berg, F. Bhanji, D. M. Cave, E. C. Jauch, P. J. Kudenchuk, R. W. Neumar, M. A. Peberdy, J. M. Perlman, E. Sinz, A. H. Travers, M. D. Berg, J. E. Billi, B. Eigel, R. W. Hickey, M. E. Kleinman, M. S. Link, L. J. Morrison, R. E. O’Connor, M. Shuster, C. W. Callaway, B. Cucchiara, J. D. Ferguson, T. D. Rea, T. L Vanden Hoek, Circulation, 2010, 122, S640; DOI: https://doi.org/10.1161/CIRCULATIONAHA.110.970889.

    Article  PubMed  Google Scholar 

  2. S. U. Kwon, J. S. Kim, in Intracranial Atherosclerosis: Pathophysiology, Diagnosis and Treatment, Front. Neurol. Neurosci., Eds J. S. Kim, L. R. Caplan, K. S. Wong, Basel, Karger, 2016, 40, 141; DOI: https://doi.org/10.1159/000448310.

  3. K. S. Anil Kumar, A. Misra, T. I. Siddiqi, S. Srivastava, M. Jain, R. S. Bhatta, M. Barthwal, M. Dikshit, D. K. Dikshit, Eur. J. Med. Chem., 2014, 81, 456; DOI: https://doi.org/10.1016/j.ejmech.2014.05.017.

    Article  CAS  PubMed  Google Scholar 

  4. A. Misra, K. S. Anil Kumar, M. Jain, K. Bajaj, S. Shandilya, S. Srivastava, P. Shukla, M. K. Barthwal, M. Dikshit, D. K. Dikshit, Eur. J. Med. Chem., 2016, 110, 1; DOI: https://doi.org/10.1016/j.ejmech.2016.01.019.

    Article  CAS  PubMed  Google Scholar 

  5. W. R. Ewing, M. R. Becker, V. E. Manetta, R. S. Davis, H. W. Pauls, H. Mason, Y. M. Choi-Sledeski, D. Green, D. Cha, A. P. Spada, D. L. Cheney, J. S. Mason, S. Maignan, J.-P. Guilloteau, K. Brown, D. Colussi, R. Bentley, J. Bostwick, C. J. Kasiewski, S. R. Morgan, R. J. Leadley, C. T. Dunwiddie, M. H. Perrone, V. Chu, J. Med. Chem., 1999, 42, 3557; DOI: https://doi.org/10.1021/jm990040h.

    Article  CAS  PubMed  Google Scholar 

  6. N. S. Watson, D. Brown, M. Campbell, C. Chan, L. Chaudry, M. A. Convery, R. Fenwick, J. N. Hamblin, C. Haslam, H. A. Kelly, N. P. King, C. L. Kurtis, A. R. Leach, G. R. Manchee, A. M. Mason, C. Mitchell, C. Patel, V. K. Patel, S. Senger, G. P. Shah, H. E. Weston, C. Whitworth, R. J. Young, Bioorg. Med. Chem. Lett., 2006, 16, 3784; DOI: https://doi.org/10.1016/j.bmcl.2006.04.053.

    Article  CAS  PubMed  Google Scholar 

  7. E. L. Bentz, R. Goswami, M. G. Moloney, S. M. Westaway, Org. Biomol. Chem., 2005, 3, 2872; DOI: https://doi.org/10.1039/b503994k.

    Article  CAS  PubMed  Google Scholar 

  8. C. Thomassigny, G. Le Bouc, C. Greck, ARKIVOC, 2012, viii, 231; DOI: https://doi.org/10.3998/ark.5550190.0013.821.

    Google Scholar 

  9. C. T. Van, T. Zdobinsky, G. Seebohm, D. Nennstiel, O. Zerbe, J. Scherkenbeck, Eur. J. Org. Chem., 2014, 2014, 2714; DOI: https://doi.org/10.1002/ejoc.201301773.

    Article  Google Scholar 

  10. K.-i. Tanaka, H. Sawanishi, Tetrahedron Asymmetry, 2000, 11, 3837; DOI: https://doi.org/10.1016/S0957-4166(00)00386-4.

    Article  CAS  Google Scholar 

  11. J. Mulzer, F. Schröder, A. Lobbia, J. Budchmann, P. Luger, Angew. Chem., Int. Ed. Engl., 1994, 33, 1737; DOI: https://doi.org/10.1002/anie.199417371.

    Article  Google Scholar 

  12. S. G. Pyne, J. Safaei-G., K. Schafer, A. Javidan, B. W. Skelton, A. H. White, Aust. J. Chem., 1998, 51, 137; DOI: https://doi.org/10.1071/C97072.

    Article  CAS  Google Scholar 

  13. D. J. Wardrop, M. S. Burge, J. Org. Chem., 2005, 70, 10271; DOI: https://doi.org/10.1021/jo051252r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Č. Malavašič, B. Brulc, P. Čebašek, G. Dahmann, N. Heine, D. Bevk, U. Grošelj, A. Menden, B. Stanovnik, J. Svete, J. Comb. Chem., 2007, 9, 219; DOI: https://doi.org/10.1021/cc060114s.

    Article  PubMed  Google Scholar 

  15. C. Pöhner, V. Ullmann, R. Hilpert, E. Samain, C. Unverzagt, Tetrahedron Lett., 2014, 55, 2197; DOI: https://doi.org/10.1016/j.tetlet.2014.02.056.

    Article  Google Scholar 

  16. V. P. Krasnov, I. M. Bukrina, E. A. Zhdanova, M. I. Kodess, M. A. Korolyova, Synthesis, 1994, 961; DOI: https://doi.org/10.1055/s-1994-25614.

  17. V. P. Krasnov, A. Yu. Vigorov, I. A. Nizova, T. V. Matveeva, A. N. Grishakov, I. V. Bazhov, A. A. Tumashov, M. A. Ezhikova, M. I. Kodess, Eur. J. Org. Chem., 2007, 2007, 4257; DOI: https://doi.org/10.1002/ejoc.200700346.

    Article  Google Scholar 

  18. V. P. Krasnov, I. A. Nizova, A. Yu. Vigorov, T. V. Matveeva, G. L. Levit, P. A. Slepukhin, M. A. Ezhikova, M. I. Kodess, Eur. J. Org. Chem., 2008, 2008, 1802; DOI: https://doi.org/10.1002/ejoc.200701154.

    Article  Google Scholar 

  19. A. Yu. Vigorov, V. P. Krasnov, I. A. Nizova, L. Sh. Sadretdinova, G. L. Levit, T. V. Matveeva, P. A. Slepukhin, D. A. Bakulin, N. S. Kovalyov, I. N. Tyurenkov, V. N. Charushin, Dokl. Chem., 2020, 494, 131; DOI: https://doi.org/10.1134/S0012500820090049.

    Article  CAS  Google Scholar 

  20. I. A. Nizova, V. P. Krasnov, O. V. Korotovskikh, L. V. Alekseeva, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 2545; DOI: https://doi.org/10.1007/bf00962442.

    Article  Google Scholar 

  21. M. A. Korolyova, A. Yu. Vigorov, V. P. Krasnov, Russ. Chem. Bull., 2022, 71, 1135; DOI: https://doi.org/10.1007/s11172-022-3513-3.

    Article  CAS  Google Scholar 

  22. J. Ezquerra, C. Pedregal, A. Rubio, B. Yruretagoyena, A. Escribano, F. Sánchez-Ferrando, Tetrahedron, 1993, 49, 8665; DOI: https://doi.org/10.1016/S0040-4020(01)96272-6.

    Article  CAS  Google Scholar 

  23. A. Yu. Vigorov, I. A. Nizova, K. E. Shalunova, A. N. Grishakov, L. Sh. Sadretdinova, I. N. Ganebnykh, M. A. Ezhikova, M. I. Kodess, V. P. Krasnov, Russ. Chem. Bull., 2011, 60, 873; DOI: https://doi.org/10.1007/s11172-011-0137-4.

    Article  CAS  Google Scholar 

  24. C. Patrono, N. Engl. J. Med., 1994, 330, 1287; DOI: https://doi.org/10.1056/NEJM199405053301808.

    Article  CAS  PubMed  Google Scholar 

  25. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 7th ed, Butterworth-Heinemann, 2013.

  26. Z. A. Gabbasov, E. G. Popov, I. Yu. Gavrilov, E. Ya. Posin, Thromb. Res., 1989, 54, 215; DOI: https://doi.org/10.1016/0049-3848(89)90229-6.

    Article  CAS  PubMed  Google Scholar 

  27. K. D. Kurz, B. W. Main, G. E. Sandusky, Thromb. Res., 1990, 60, 269; DOI: https://doi.org/10.1016/0049-3848(90)90106-M.

    Article  CAS  PubMed  Google Scholar 

  28. P. K. Henke, M. R. Varma, D. K. Moaveni, N. A. Dewyer, A. J. Moore, E. M. Lynch, C. Longo, C. B. Deatrick, S. L. Kunkel, J. R. Upchurch Jr., T. W. Wakefield, Thromb. Haemostasis, 2007, 98, 1045; DOI: https://doi.org/10.1160/TH07-03-0190.

    Article  CAS  Google Scholar 

  29. Z. S. Barkagan, A. P. Momot, Diagnostika i kontroliruemaya terapiya narusheniy gemostaza [Diagnosis and Controlled Therapy of Hemostasis Disorders], N’yudiamed, Moscow, 2001, 296 pp. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Vigorov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2636–2644, December, 2022.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-43-660045) and carried out within the framework of the Russian state assignment for the Postovsky Institute of Organic Synthesis of the Russian Academy of Sciences (Ural Branch) (IOS UB RAS) (Project No. AAAA-A19-119011790130-3).

The studies were carried out using the equipment of the Centre for Joint Use “Spectroscopy and Analysis of Organic Compounds” (CJU “SAOC”) at the IOS UB RAS.

All applicable international, national, and/or institutional guidelines for the care and use of animals have been followed. The animals were kept under standard conditions in accordance with Directive 2010/63/EU of the European Parliament and the Council of the European Union of September 22, 2010 on the protection of animals used for scientific purposes. The study plan was approved by the Regional Independent Ethics Committee at the Volgograd State Medical University of the Ministry of Health of the Russian Federation.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigorov, A.Y., Nizova, I.A., Levit, G.L. et al. Synthesis and study of antiplatelet and antithrombotic activity of 4-substituted pyroglutamic acids. Russ Chem Bull 71, 2636–2644 (2022). https://doi.org/10.1007/s11172-022-3693-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3693-x

Key words

Navigation