Skip to main content
Log in

Chiral zinc complexes with terpene derivatives of ethylenediamine: synthesis and biological activity

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Six new chiral zinc(ii) complexes 1–6 based on ethylenediamine derivatives of terpenes were synthesized and characterized. The molecular structure of complex 2 was established by X-ray diffraction analysis. The modulating effect of complexes 1–6 on the functional state of mitochondria, which are organelles playing an utterly important role in maintaining the energy balance of cells, transfer of genetic material, and regulation of the processes of triggering the cell death by apoptosis, autophagy, and necrosis, was studied. It is shown that synthesized zinc complexes lead to depolarization of the mitochondrial membrane, an increase in the threshold of sensitivity of the organelles to calcium-induced opening of the mitochondrial permeability transition pores, and disruption of the operation of the respiratory chain complexes in these organelles. Such a dysfunctional state of mitochondria is one of the main causes of cell death through apoptosis due to the release of various proapoptotic factors into the intracellular space. In this regard, the newly synthesized zinc complexes 1–6 can be considered as destructive agents aimed at triggering cell death cascades by affecting mitochondrial functions. These properties are of paramount importance when searching for potential drugs with possible antitumor, antiprotozoal, or antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Pellei, F. Del Bello, M. Porchia, C. Santini, Coord. Chem. Rev., 2021, 445, 214088; DOI: https://doi.org/10.1016/j.ccr.2021.214088.

    Article  CAS  Google Scholar 

  2. N. V. Loginova, H. I. Harbatsevich, N. P. Osipovich, G. A. Ksendzova, T. V. Koval’chuk, G. I. Polozov, Curr. Med. Chem., 2020, 27, 5213; DOI: https://doi.org/10.2174/0929867326666190417143533.

    Article  CAS  PubMed  Google Scholar 

  3. M. Abendrot, L. Chęcińska, J. Kusz, K. Lisowska, K. Zawadzka, A. Felczak, U. Kalinowska-Lis, Molecules, 2020, 25, 951; DOI: https://doi.org/10.3390/molecules25040951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. N. S. Kiprova, Y. A. Kondratenko, V. L. Ugolkov, T. A. Kochina, V. V. Gurzhiy, Russ. Chem. Bull., 2020, 69, 1789; DOI: https://doi.org/10.1007/s11172-020-2963-8.

    Article  CAS  Google Scholar 

  5. T. S. Basu Baul, K. Nongsiej, A. Lamin Ka-Ot, S. R. Joshi, I. Rojas León, H. Höpfl, Appl. Organomet. Chem., 2019, 33, e4905; DOI: https://doi.org/10.1002/aoc.4905.

    Article  Google Scholar 

  6. A. Mastrolorenzo, A. Scozzafava, C. T. Supuran, Eur. J. Pharm. Sci., 2000, 11, 99; DOI: https://doi.org/10.1016/s0928-0987(00)00093-2.

    Article  CAS  PubMed  Google Scholar 

  7. J. A. de Azevedo-França, L. P. Borba-Santos, G. de Almeida Pimentel, C. H. J. Franco, C. Souza, J. de Almeida Celestino, E. F. de Menezes, N. P. Dos Santos, E. G. Vieira, A. M. D. C. Ferreira, W. de Souza, S. Rozental, M. Navarro, J. Inorg. Biochem., 2021, 219, 111401; DOI: https://doi.org/10.1016/j.jinorgbio.2021.111401.

    Article  PubMed  Google Scholar 

  8. D. Matiadis, D. Tsironis, V. Stefanou, A.G. Elliott, K. Kordatos, G. Zahariou, N. Ioannidis, V. McKee, A. Panagiotopoulou, O. Igglessi-Markopoulou, J. Markopoulos, J. Inorg. Biochem., 2019, 194, 65; DOI: https://doi.org/10.1016/j.jinorgbio.2019.02.008.

    Article  CAS  PubMed  Google Scholar 

  9. V.-F. Zaltariov, M. Cazacu, M. Avadanei, S. Shova, M. Balan, N. Vornicu, A. Vlad, A. Dobrov, C.-D. Varganici, Polyhedron, 2015, 100, 121; DOI: https://doi.org/10.1016/j.poly.2015.07.030.

    Article  CAS  Google Scholar 

  10. M. Porchia, M. Pellei, F. Del Bello, C. Santini, Molecules, 2020, 9, e5814; DOI: https://doi.org/10.3390/molecules25245814.

    Article  Google Scholar 

  11. N. S. Rukk, L. G. Kuzmina, G. A. Davydova, G. A. Buzanov, S. K. Belus, E. I. Kozhukhova, V. M. Retivov, T. V. Ivanova, V. N. Krasnoperova, B. M. Bolotin, Russ. Chem. Bull., 2020, 69, 1394; DOI: https://doi.org/10.1007/s11172-020-2914-4.

    Article  CAS  Google Scholar 

  12. P. Yu, J. Deng, J. Cai, Z. Zhang, J. Zhang, M. Hamid Khan, H. Liang, F. Yang, Metallomics, 2019, 11, 1372; DOI: https://doi.org/10.1039/c9mt00124g.

    Article  CAS  PubMed  Google Scholar 

  13. A. Garufi, E. Giorno, M. S. Gilardini Montani, G. Pistritto, A. Crispini, M. Cirone, G. D’Orazi, Biomolecules, 2021, 11, 348; DOI: https://doi.org/10.3390/biom11030348.

    Article  PubMed  PubMed Central  Google Scholar 

  14. S. Shahraki, M. H. Majd, A. Heydari, J. Mol. Struct., 2019, 1177, 536; DOI: https://doi.org/10.1016/j.molstruc.2018.10.005.

    Article  CAS  Google Scholar 

  15. C. I. Chukwuma, S. S. Mashele, K. C. Eze, G. R. Matowane, S. M. Islam, S. L. Bonnet, A. E. M. Noreljaleel, L. M. Ramorobi, Pharmacol. Res., 2020, 155, 104744; DOI: https://doi.org/10.1016/j.phrs.2020.104744.

    Article  CAS  PubMed  Google Scholar 

  16. D. M. Motloung, S. S. Mashele, G. R. Matowane, S. S. Swain, S. L. Bonnet, A. E. M. Noreljaleel, S. O. Oyedemi, C. I. Chukwuma, J. Pharm. Pharmacol., 2020, 72, 1412; DOI: https://doi.org/10.1111/jphp.13322.

    Article  CAS  PubMed  Google Scholar 

  17. D. R. Rice, M. de Lourdes Betancourt Mendiola, C. Murillo-Solano, L. A. Checkley, M. T. Ferdig, J. C. Pizarro, B. D. Smith, Bioorg. Med. Chem., 2017, 25, 2754; DOI: https://doi.org/10.1016/j.bmc.2017.03.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. E. Boros, P. J. Dyson, G. Gasser, Chem, 2019, 6, 41; DOI: https://doi.org/10.1016/j.chempr.2019.10.013.

    Article  PubMed  PubMed Central  Google Scholar 

  19. O. I. Yarovaya, N. F. Salakhutdinov, Russ. Chem. Rev., 2021, 90, 488; DOI: https://doi.org/10.1070/RCR4969.

    Article  Google Scholar 

  20. O. A. Zalevskaya, Y. A. Gur’eva, A. V. Kutchin, Russ. Chem. Rev., 2019, 88, 979; DOI: https://doi.org/10.1070/RCR4880.

    Article  CAS  Google Scholar 

  21. W. Ju, N. Li, J. Wang, N. Yu, Z. Lei, L. Zhang, J. Sun, L. Chen, Bioorg. Chem., 2021, 115, 105249; DOI: https://doi.org/10.1016/j.bioorg.2021.105249.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Zhang, T. Li, M. Xu, J. Guo, C. Zhang, Z. Feng, X. Peng, Z. Li, K. Xing, S. Qin, Pestic. Biochem. Physiol., 2021, 173, 104777; DOI: https://doi.org/10.1016/j.pestbp.2021.104777.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Luo, J. Ma, W. Lu, Int. J. Mol. Sci., 2020, 21, 5598; DOI: https://doi.org/10.3390/ijms21165598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. I. A. Dvornikova, E. V. Buravlev, L. L. Frolova, Yu. V. Nelyubina, I. Yu. Chukicheva, A. V. Kuchin, Russ. J. Org. Chem., 2011, 47, 1130; DOI: https://doi.org/10.1134/S1070428011080021.

    Article  CAS  Google Scholar 

  25. Y. A. Gur’eva, I. N. Alekseev, A. V. Kutchin, O. A. Zalevskaya, P. A. Slepukhin, Russ. J. Org. Chem., 2016, 52, 781; DOI: https://doi.org/10.1134/S107042801606004X.

    Article  Google Scholar 

  26. Y. A. Gur’eva, O. A. Zalevskaya, I. N. Alekseev, P. A. Slepukhin, A. V. Kutchin, Russ. J. Org. Chem., 2018, 54, 1285; DOI: https://doi.org/10.1134/S1070428018090026.

    Article  Google Scholar 

  27. O. A. Zalevskaya, Y. A. Gur’eva, A. V. Kutchin, Yu. R. Aleksandrova, E. Yu. Yandulova, N. S. Nikolaeva, M. E. Neganova, Inorg. Chim. Acta, 2021, 527, 120593; DOI: https://doi.org/10.1016/j.ica.2021.120593.

    Article  CAS  Google Scholar 

  28. K. S. Kwon, S. Nayab, J. H. Jeong, Polyhedron, 2017, 130, 23; DOI: https://doi.org/10.1016/j.poly.2017.03.061.

    Article  CAS  Google Scholar 

  29. A. Okuniewski, D. Rosiak, J. Chojnacki, B. Becker, Polyhedron, 2015, 90, 47; DOI: https://doi.org/10.1016/j.poly.2015.01.035.

    Article  CAS  Google Scholar 

  30. D. Fang, E. N. Maldonado, Adv. Cancer Res., 2018, 138, 41; DOI: https://doi.org/10.1016/bs.acr.2018.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Y. Zhao, J. Liu, L. Liu, Mol. Med. Rep., 2020, 22, 3017; DOI: https://doi.org/10.3892/mmr.2020.11341.

    CAS  PubMed  Google Scholar 

  32. C. L. Quinlan, A. L. Orr, I. V. Perevoshchikova, J. R. Treberg, B. A. Ackrell, M. D. Brand, J. Biol. Chem., 2012, 287, 27255; DOI: https://doi.org/10.1074/jbc.M112.374629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. G. Guzzo, M. Sciacovelli, P. Bernardi, A. Rasola, Oncotarget, 2014, 5, 11897; DOI: https://doi.org/10.18632/oncotarget.2472.

    Article  PubMed  PubMed Central  Google Scholar 

  34. M. Sciacovelli, G. Guzzo, V. Morello, C. Frezza, L. Zheng, N. Nannini, F. Calabrese, G. Laudiero, F. Esposito, M. Landriscina, P. Defilippi, P. Bernardi, A. Rasola, Cell Metab., 2013, 17, 988; DOI: https://doi.org/10.1016/j.cmet.2013.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Moog, C. Lussey-Lepoutre, J. Favier, Endocr. Relat. Cancer., 2020, 27, R451; DOI: https://doi.org/10.1530/ERC-20-0346.

    Article  CAS  PubMed  Google Scholar 

  36. S. J. Withey, S. Perrio, D. Christodoulou, L. Izatt, P. Carroll, A. Velusamy, R. Obholzer, V. Lewington, A. E. T. Jacques, Radiographics, 2019, 39, 1393; DOI: https://doi.org/10.1148/rg.2019180151.

    Article  PubMed  Google Scholar 

  37. A. Ibrahim, S. Chopra, Arch. Pathol. Lab. Med., 2020, 144, 655; DOI: https://doi.org/10.5858/arpa.2018-0370-RS.

    Article  CAS  PubMed  Google Scholar 

  38. A. J. Gill, Histopathology, 2018, 72, 106; DOI: https://doi.org/10.1111/his.13277.

    Article  PubMed  Google Scholar 

  39. M. Matsubayashi, D. K. Inaoka, K. Komatsuya, T. Hatta, F. Kawahara, K. Sakamoto, K. Hikosaka, J. Yamagishi, K. Sasai, T. Shiba, S. Harada, N. Tsuji, K. Kita, Genes (Basel), 2019, 10, 29; DOI: https://doi.org/10.3390/genes10010029.

    Article  PubMed  Google Scholar 

  40. G. L. Nixon, C. Pidathala, A. E. Shone, T. Antoine, N. Fisher, P. M. O’Neill, S. A. Ward, G. A. Biagini, Future Med. Chem., 2013, 5, 1573; DOI: https://doi.org/10.4155/fmc.13.121.

    Article  CAS  PubMed  Google Scholar 

  41. P. A. Stocks, V. Barton, T. Antoine, G. A. Biagini, S. A. Ward, P. M. O’Neill, Parasitology, 2014, 141, 50; DOI: https://doi.org/10.1017/S0031182013001571.

    Article  CAS  PubMed  Google Scholar 

  42. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

  43. G. M. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  Google Scholar 

  44. A. G. Gornall, C. J. Bardavill, M. D. David, J. Biol. Chem., 1949, 177, 751; PMID: 18110453.

    Article  CAS  PubMed  Google Scholar 

  45. K. E. Akerman, M. K. Wikström, FEBS Lett., 1976, 68, 191; DOI: https://doi.org/10.1016/0014-5793(76)80434-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Zalevskaya.

Additional information

Based on the materials of the V Russian Conference on Medicinal Chemistry with international participation “MedChem-Russia 2021” (May 16–19, 2022, Volgograd, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2612–2620, December, 2022.

Spectroscopic studies of zinc complexes were performed using the equipment of the Center of Collective Usage “Chemistry” of the Institute of Chemistry, Komi Scientifi c Center, Ural Branch of the Russian Academy of Sciences. X-ray diff raction analysis was performed on the equipment of the Center of Collective Usage “Spectroscopy and Analysis of Organic Compounds” of the Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences. All biological tests were carried out with the use of the equipment of the Center of Collective Usage of the Institute of Physiologically Active Substances of the Russian Academy of Sciences (IPAC RAS).

This work was performed under financial support of the Russian Foundation for Basic Research (Project No. 20-03-00027) and Ministry of Science and Higher Education of the Russian Federation (State task No. 122040600073-3).

The animals were kept under standard conditions in accordance with Directive 2010/63 EU of the European Parliament and of the Council of the European Union on the protection of animals used for scientific purposes dated September 22, 2010. All experiments with animals were carried out in compliance with international principles and norms in accordance with the decisions of the Commission on Biological Ethics of IPAC RAS (protocol No. 59 dated May 12, 2022).

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gur’eva, Y.A., Zalevskaya, O.A., Nikolaeva, N.S. et al. Chiral zinc complexes with terpene derivatives of ethylenediamine: synthesis and biological activity. Russ Chem Bull 71, 2612–2620 (2022). https://doi.org/10.1007/s11172-022-3690-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3690-0

Key words

Navigation