Skip to main content
Log in

A quantum chemical study of the mechanism of thermal decomposition of N′-methoxy-N-methyldiazene N-oxide

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Alternative primary reactions of thermal decomposition of N′-methoxy-N-methyldiazene N-oxide (1) to the experimentally observed products under normal conditions and the average experimental temperature were studied using the density functional methods PBE, B3LYP, wB97XD, wB97X with different basis sets and the composite method G4. All methods gave qualitatively consistent results. Based on these results and a detailed PBE/L11 and B3LYP/6-31G (2df, p) study of various secondary processes, it was concluded that the most energetically advantageous and, hence, the most likely channel of thermal decomposition of 1 involves the isomerization of the latter by rotation of the MeO group around the NO bond followed by the transfer of the Me group between oxygen atoms. The enthalpy of activation of the Me group transfer obtained by all the methods used agrees well with the experimentally obtained value, and this reaction is the limiting step of the entire process of thermal decomposition of 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. P. Kirpichev, I. N. Zyuzin, V. V. Avdonin, Yu. I. Rubtsov, D. B. Lempert, Russ. J. Phys. Chem. A., 2006, 80, 1359; DOI: https://doi.org/10.1134/S0036024406090019.

    Article  CAS  Google Scholar 

  2. P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai, A. J. Janczuk, Chem. Rev., 2002, 102, 1091; DOI: https://doi.org/10.1021/cr000040l.

    Article  CAS  PubMed  Google Scholar 

  3. J. A. Hrabie, L. K. Keefer, Chem. Rev., 2002, 102, 1135; DOI: https://doi.org/10.1021/cr000028t.

    Article  CAS  PubMed  Google Scholar 

  4. T. B. Cai, X. Tang, J. Nagorski, P. G. Brauschweiger, P. G. Wang, Bioorg. Med. Chem., 2003, 11, 4971; DOI: https://doi.org/10.1016/j.bmc.2003.09.003.

    Article  CAS  PubMed  Google Scholar 

  5. J. Brand, T. Huhn, U. Groth, J. C. Jochims, Chem. Eur. J., 2006, 12, 499; DOI: https://doi.org/10.1002/chem.200500325.

    Article  Google Scholar 

  6. I. N. Zyuzin, D. B. Lempert, G. N. Nechiporenko, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 1329; DOI: https://doi.org/10.1007/BF00962732.

    Article  Google Scholar 

  7. G. A. Smirnov, O. A. Lukyanov, Russ. Chem. Bull., 2020, 69, 295; DOI: https://doi.org/10.1007/s11172-020-2759-x.

    Article  CAS  Google Scholar 

  8. I. N. Zyuzin, Russ. Chem. Bull., 2020, 69, 1949; DOI: https://doi.org/10.1007/s11172-020-2984-3.

    Article  CAS  Google Scholar 

  9. G. A. Smirnov, P. B. Gordeev, Russ. Chem. Bull., 2020, 69, 2153; DOI: https://doi.org/10.1007/s11172-020-3014-1.

    Article  CAS  Google Scholar 

  10. D. A. Gulyaev, M. S. Klenov, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, V. A. Tartakovsky, Russ. Chem. Bull., 2021, 70, 1599; DOI: https://doi.org/10.1007/s11172-021-3256-6.

    Article  CAS  Google Scholar 

  11. A. A. Konnov, I. M. Dubrovin, M. S. Klenov, O. V. Anikin, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, V. A. Tartakovsky, Russ. Chem. Bull., 2021, 70, 2189; DOI: https://doi.org/10.1007/s11172-021-3331-z.

    Article  CAS  Google Scholar 

  12. V. P. Grachev, I. N. Zyuzin, S. V. Kurmaz, E. V. Vaganov, R. I. Komendant, D. B. Lempert, Russ. Chem. Bull., 2020, 69, 2312; DOI: https://doi.org/10.1007/s11172-020-3037-7.

    Article  CAS  Google Scholar 

  13. V. V. Zakharov, N. V. Chukanov, I. N. Zyuzin, V. V. Nedel’ko, B. L. Korsunskii, Russ. J. Phys. Chem. B, 2019, 13, No. 1, 62; DOI: https://doi.org/10.1134/S1990793119010305.

    Article  CAS  Google Scholar 

  14. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, V. A. Strunin, Termicheskoe razlozhenie i gorenie vzryvchatykh veschestv i porokhov [Thermal Decomposition and Combustion of Explosives and Gunpowders], Izd-vo Nauka, Moscow, 1996, 223 pp. (in Russian).

    Google Scholar 

  15. E. N. Alikina, Analiticheskaya khimiya. Kolichestvennyi analiz: uchebnoe posobie [Analytical Chemistry. Quantitative Analysis: A Study Guide], Izd-vo Perm. Gos. Univ., Perm, 2021, 252 pp. (in Russian).

    Google Scholar 

  16. W. Traube, Ann. Chemie (Paris), 1898, 300, 81.

    Article  CAS  Google Scholar 

  17. G. A. Marchenko, L. F. Chertanova, Yu. T. Struchkov, B. I. Buzykin, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 1646; DOI: https://doi.org/10.1007/BF00960123.

    Article  Google Scholar 

  18. O. A. Litvinov, O. N. Kataeva, V. A. Naumov, G. A. Marchenko, V. I. Kovalenko, J. Struct. Chem. (USSR), 1988, 29, No. 3, 469; DOI: https://doi.org/10.1007/BF00744007.

    Article  Google Scholar 

  19. V. V. Zverev, R. G. Islamov, F. Kh. Islamova, V. M. Vakar’, J. Struct. Chem. (USSR), 1989, 30, No. 2, 288; DOI: https://doi.org/10.1007/BF00761310.

    Google Scholar 

  20. V. V. Zverev, F. Kh. Islamova, R. G. Islamov, J. Struct. Chem. (USSR), 1989, 30, No. 2, 233; DOI: https://doi.org/10.1007/BF00761311.

    Article  Google Scholar 

  21. I. N. Zyuzin, G. N. Nechiporenko, Russ. Chem. Bull., 1998, 47, 2317; DOI: https://doi.org/10.1007/BF02494309.

    Article  CAS  Google Scholar 

  22. I. N. Zyuzin, D. B. Lempert, G. N. Nechiporenko, Russ. Chem. Bull., 2003, 52, 1431; DOI: https://doi.org/10.1023/a:1024851816572.

    Article  CAS  Google Scholar 

  23. I. N. Zyuzin, D. B. Lempert, Russ. J. Gen. Chem., 2010, 80, 1792; DOI: https://doi.org/10.1134/S1070363210090124.

    Article  CAS  Google Scholar 

  24. I. N. Zyuzin, D. B. Lempert, Kinet. Catal. (Engl. Transl.), 2011, 52, 17; DOI: https://doi.org/10.1134/S0023158411010228.

    Article  CAS  Google Scholar 

  25. T. I. Magsumov, A. G. Shamov, Tez. dokl. XIX Mendeleevskogo s’ezda po obshchei i prikladnoi khimii (Volgograd, 25–30 sentyabrya, 2011 g.) [Abst. XIX Mendeleev Congress on General and Applied Chemistry (Volgograd, Sept. 25–30, 2011)], Volgograd. Gos. Tekhn. Univ., V. 1, p. 278 (in Russian).

  26. I. N. Zyuzin, D. B. Lempert, Russ. J. Gen. Chem., 2012, 82, 1891; DOI: https://doi.org/10.1134/S107036321211031X.

    Article  CAS  Google Scholar 

  27. I. N. Zyuzin, D. B. Lempert, Russ. J. Gen. Chem., 2014, 84, 162; DOI: https://doi.org/10.1134/S1070363214010253.

    Article  CAS  Google Scholar 

  28. H. Li, F. Zhao, Q. Yu, W. Lai, B. Wang, Chin. J. Energ. Mat., 2014, 22, 880; DOI: https://doi.org/10.11943/j.issn.1006-9941.2014.06.032.

    CAS  Google Scholar 

  29. I. N. Zyuzin, D. B. Lempert, Russ. J. Gen. Chem., 2014, 84, 831; DOI: https://doi.org/10.1134/S1070363214050077.

    Article  CAS  Google Scholar 

  30. M. S. Klenov, O. V. Anikin, A. M. Churakov, Y. A. Strelenko, I. V. Fedyanin, I. V. Ananyev, V. A. Tartakovsky, Eur. J. Org. Chem., 2015, 6170; DOI: https://doi.org/10.1002/ejoc.201500923.

  31. M. S. Klenov, O. V. Anikin, A. A. Guskov, A. M. Churakov, Y. A. Strelenko, I. V. Ananyev, I. S. Bushmarinov, A. O. Dmitrenko, K. A. Lyssenko, V. A. Tartakovsky, Eur. J. Org. Chem., 2016, 3845; DOI: https://doi.org/10.1002/ejoc.201600584.

  32. Z. G. Aliev, I. N. Zyuzin, S. M. Aldoshin, Russ. J. Struct. Chem., 2016, 57, 760; DOI: https://doi.org/10.1134/S0022476616040193.

    Article  CAS  Google Scholar 

  33. N. E. Leonov, M. S. Klenov, O. V. Anikin, A. M. Churakov, Y. A. Strelenko, K. A. Monogarov, K. A. Tartakovsky, Eur. J. Org. Chem., 2019, 91; DOI: https://doi.org/10.1002/ejoc.201801533.

  34. I. N. Zyuzin, A. I. Kazakov, D. B. Lempert, A. V. Nabatova, in Khimiya nitrosoedinenii i rodstvennykh azotkislorodnykh system. Vserosiiskaya konferentsiya, Moskva, 23–25 oktyabrya 2019 [Chemistry of Nitro Compounds and Related Nitrogen-Oxygen Systems: All-Russian Conference, Moscow, Oct. 23–25, 2019], Eds. M. P. Egorov, V. A. Tartakovsky, S. G. Zlotin, Izd-vo MAX Press, Moscow, 2019, p. 156 (in Russian).

  35. I. N. Zyuzin, A. I. Kazakov, D. B. Lempert, I. A. Vatsadze, L. S. Kurochkina, A. V. Nabatova, Comb., Explos., Shock Waves (Engl. Transl.), 2019, 55, 644; DOI: https://doi.org/10.1134/S0010508219060029.

    Article  Google Scholar 

  36. I. N. Zyuzin, D. B. Lempert, A. V. Nabatova, A. I. Kazakov, Comb., Expl., Shock Waves (Engl. Transl.), 2020, 56, 464; DOI: https://doi.org/10.1134/S0010508220040103.

    Article  Google Scholar 

  37. A. G. Shamov, T. I. Magsumov, E. V. Nikolaeva, Tez. dokl. X Mezhdunar. nauch. conf. “Khimicheskaya termodinamika i kinetika” (Velikii Novgorod, 17–21 maya, 2020 g.) [Abst. X Int.. Sci. Conf. “Chemical Thermodynamics and Kinetics” (Velikiy Novgorod, May 17–21, 2020)], The Yaroslav-the-Wise Novgorod State University, 2020, p. 270 (in Russian).

  38. E. V. Nikolaeva, G. M. Khrapkovskii, I. V. Aristov, D. L. Egorov, A. G. Shamov, J. Phys.: Conf. Ser., 2021, 2052, 012030; DOI: https://doi.org/10.1088/1742-6596/2052/1/012030.

    Google Scholar 

  39. E. V. Nikolaeva, A. G. Shamov, G. M. Khrapkovsii, Russ. J. Gen. Chem., 2014, 84, 2076; DOI: https://doi.org/10.1134/S1070363214110048.

    Article  CAS  Google Scholar 

  40. E. V. Nikolaeva, D. V. Chachkov, A. G. Shamov, G. M. Khrapkovskii, Russ. Chem. Bull., 2018, 67, 274; DOI: https://doi.org/10.1007/s11172-018-2070-2.

    Article  CAS  Google Scholar 

  41. E. V. Nikolaeva, D. L. Egorov, D. V. Chachkov, A. G. Shamov, G. M. Khrapkovskii, Russ. Chem. Bull., 2019, 68, 1510; DOI: https://doi.org/10.1007/s11172-019-2585-1.

    Article  CAS  Google Scholar 

  42. D. N. Laikov, Ph. D. (Phys.-Math.), Moscow State Univ., Moscow, 2000, 97 pp. (in Russian).

    Google Scholar 

  43. D. L. Egorov, A. G. Shamov, G. M. Khrapkovsky, Vestn. tekhnol. un-ta [Bull. Technol. Univ.], 2015, 18, No. 21, 12 (in Russian).

    Google Scholar 

  44. A. D. Becke, Phys. Rev. A, 1988, 38, 3098; DOI: https://doi.org/10.1103/PhysRevA.38.3098.

    Article  CAS  Google Scholar 

  45. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785; DOI: https://doi.org/10.1103/PhysRevB.37.785.

    Article  CAS  Google Scholar 

  46. G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys., 1988, 89, 2193; DOI: https://doi.org/10.1063/1.455064.

    Article  CAS  Google Scholar 

  47. G. A. Petersson, M. A. Al-Laham, J. Chem. Phys., 1991, 94, 6081; DOI: https://doi.org/10.1063/1.460447.

    Article  CAS  Google Scholar 

  48. J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615; DOI: https://doi.org/10.1039/b810189b.

    Article  CAS  PubMed  Google Scholar 

  49. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297; DOI: https://doi.org/10.1039/b508541a.

    Article  CAS  PubMed  Google Scholar 

  50. L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys., 2007, 126, 084108; DOI: https://doi.org/10.1063/1.2436888.

    Article  PubMed  Google Scholar 

  51. G. M. Khrapkovskii, A. G. Shamov, R. V. Tsyshevsky, D. V. Chachkov, B. Nguen Van, D. L. Egorov, I. V. Aristov, Comput. Theor. Chem., 2011, 966, 265; DOI: https://doi.org/10.1016/j.comptc.2011.03.016.

    Article  CAS  Google Scholar 

  52. G. M. Khrapkovskii, D. D. Sharipov, A. G. Shamov, D. L. Egorov, D. V. Chachkov, B. Nguyen Van, R. V. Tsyshevsky, Comput. Theor. Chem., 2013, 1017, 7; DOI: https://doi.org/10.1016/j.comptc.2013.04.013.

    Article  CAS  Google Scholar 

  53. A. F. Shamsutdinov, T. F. Shamsutdinov, D. V. Chachkov, A. G. Shamov, G. M. Khrapkovskii, Int. J. Quant. Chem., 2007, 107, 2343; DOI: https://doi.org/10.1002/qua.21394.

    Article  CAS  Google Scholar 

  54. D. D. Sharipov, D. L. Egorov, D. V. Chachkov, A. G. Shamov, G. M. Khrapkovskii, Russ. J. Gen. Chem., 2011, 81, 2273; DOI: https://doi.org/10.1134/S1070363211110107.

    Article  CAS  Google Scholar 

  55. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision B.01, Gaussian Inc., Wallingford CT, 2016.

    Google Scholar 

  56. H. B. Schlegel, J. Comp. Chem., 1982, 3, 214; DOI: https://doi.org/10.1002/jcc.540030212.

    Article  CAS  Google Scholar 

  57. G. M. Khrapkovskii, A. G. Shamov, E. V. Nikolaeva, D. V. Chachkov, Russ. Chem. Rev., 2009, 78, 903; DOI: https://doi.org/10.1070/RC2009v078n10ABEH004053.

    Article  CAS  Google Scholar 

  58. E. V. Nikolaeva, A. G. Shamov, G. M. Khrapkovskii, Kh. E. Kharlampidi, Russ. J. Gen. Chem., 2002, 72, 748; DOI: https://doi.org/10.1023/A:1019564403662.

    Article  CAS  Google Scholar 

  59. Y. Peng, X. Xiu, G. Zhu, Y. Yang, J. Phys. Chem. A, 2018, 122, 8336; DOI: https://doi.org/10.1021/acs.jpca.8b06458.

    Article  CAS  PubMed  Google Scholar 

  60. C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comput. Chem., 1996, 17, 49; DOI: https://doi.org/10.1002/(SICI)1096987X(19960115)17:1.

    Article  CAS  Google Scholar 

  61. B. L. Korsunskii, G. M. Nazin, V. R. Stepanov, A. A. Fedotov, Kinet. Catal. (Engl. Transl.), 1993, 34, 691.

    Google Scholar 

  62. L. Cooper, L. G. Shpinkova, E. E. Rennie, D. M. P. Holland, D. A. Shaw, Int. J. Mass. Spectrom., 2001, 207, 223; DOI: https://doi.org/10.1016/S1387-3806(01)00374-8.

    Article  CAS  Google Scholar 

  63. G. M. Khrapkovskii, E. V. Nikolaeva, D. L. Egorov, D. V. Chachkov, A. G. Shamov, Russ. J. Org. Chem., 2016, 52, 791; DOI: https://doi.org/10.1134/S1070428016060063.

    Article  CAS  Google Scholar 

  64. G. M. Khrapkovskii, E. V. Nikolaeva, D. L. Egorov, D. V. Chachkov, A. G. Shamov, Russ. J. Org. Chem., 2017, 53, 999; DOI: https://doi.org/10.1134/S1070428017070077.

    Article  CAS  Google Scholar 

  65. A. G. Shamov, E. V. Nikolaeva, G. M. Khrapkovskii, Russ. J. Appl. Chem., 2009, 82, 1741; DOI: https://doi.org/10.1134/S1070427209100024.

    Article  CAS  Google Scholar 

  66. K. Fukui, Acc. Chem. Res., 1981, 14, 363; DOI: https://doi.org/10.1021/ar00072a001.

    Article  CAS  Google Scholar 

  67. R. Seeger, J. A. Pople, J. Chem. Phys., 1977, 66, 3045; DOI: https://doi.org/10.1063/1.434318.

    Article  CAS  Google Scholar 

  68. R. Bauernschmitt, R. Ahlrichs, J. Chem. Phys., 1996, 104, 9047; DOI: https://doi.org/10.1063/1.471637.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Nikolaeva.

Additional information

Based on the materials of the VI North Caucasus Symposium on Organic Chemistry NCOCS-2022 (April 18–22, 2022, Stavropol, Russia).

Deceased.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2595–2604, December, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, E.V., Aristov, I.V., Chachkov, D.V. et al. A quantum chemical study of the mechanism of thermal decomposition of N′-methoxy-N-methyldiazene N-oxide. Russ Chem Bull 71, 2595–2604 (2022). https://doi.org/10.1007/s11172-022-3688-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3688-7

Key words

Navigation