Skip to main content
Log in

Role of structural components of the 2-methoxyestradiol—chlorambucil conjugate in microtubule stabilization

  • Brief Communications
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The conjugate of 2-methoxyestradiol, a ligand for the cell protein tubulin, with two molecules of chlorambucil, known as a DNA-alkylating agent, is capable of blocking the dynamics of tubulin-based microtubules at concentrations of 10–100 µmol L−1, by stabilizing them without changing their structure. Three analogs of this conjugate, which do not contain chloroethylamino and/or methoxy groups at C(2), were synthesized. At these concentrations, these analogs have another, inhibitory or combined, effect on the microtubule polymerization. Based on the molecular modeling results, the binding site of the initial conjugate in tubulin was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. Kumar, R. Kumar, I. Skvortsova, V. Kumar, Curr. Cancer Drug Targets, 2017, 17, 357; DOI: https://doi.org/10.2174/1568009616666160928110818.

    Article  CAS  Google Scholar 

  2. N. A. Lozinskaya, N. A. Maximova, D. R. Bazanov, S. E. Sosonyuk, B. Wobith, N. A. Zefirov, E. V. Kharitonashvili, O. N. Zefirova, S. A. Kuznetsov, M. V. Proskurnina, Mendeleev Commun., 2020, 30, 7; DOI: https://doi.org/10.1016/j.mencom.2020.01.002.

    Article  CAS  Google Scholar 

  3. E. A. Molkova, E. S. Shchegravina, V. F. Otvagin, N. S. Kuzmina, Yu. B. Malysheva, E. V. Svirshchevskaya, E. A. Zaburdaeva, A. Yu. Fedorov, Russ. Chem. Bull., 2022, 71, 564; DOI: https://doi.org/10.1007/s11172-022-3449-7.

    Article  CAS  Google Scholar 

  4. E. A. Silyanova, A. V. Samet, M. N. Semenova, V. V. Semenov, Russ. Chem. Bull., 2021, 70, 498; DOI: https://doi.org/10.1007/s11172-021-3115-5.

    Article  CAS  Google Scholar 

  5. R. M. Buey, I. Barasoain, E. Jackson, A. Meyer, P. Giannakakou, I. Paterson, S. Mooberry, J. M. Andreu, J. F. Díaz, Chem. Biol., 2005, 12, 1269; DOI: https://doi.org/10.1016/j.chembiol.2005.09.010.

    Article  CAS  Google Scholar 

  6. M. A. Jordan, L. Wilson, Nat. Rev. Cancer, 2004, 4, 253; DOI: https://doi.org/10.1038/nrc1317.

    Article  CAS  Google Scholar 

  7. K. Kamath, T. Okouneva, G. Larson, D. Panda, L. Wilson, M. A. Jordan, Mol. Cancer Ther., 2006, 5, 2225; DOI: https://doi.org/10.1158/1535-7163.MCT-06-0113.

    Article  CAS  Google Scholar 

  8. B. Dahllöf, A. Billström, F. Cabral, B. Hartley-Asp, Cancer Res., 1993, 53, 4573; PMID: 8402630.

    Google Scholar 

  9. D. Panda, H. P. Miller, K. Islam, L. Wilson, Proc. Natl. Acad. Sci. USA, 1997, 94, 10560; DOI: https://doi.org/10.1073/pnas.94.20.1056.

    Article  CAS  Google Scholar 

  10. R. Mohanand, D. Panda, Cancer Res., 2008, 68, 6181; DOI: https://doi.org/10.1158/0008-5472.CAN-08-0584.

    Article  Google Scholar 

  11. P. Verdier-Pinard, Z. Wang, A. K. Mohanakrishnan, M. Cushman, E. Hamel, Mol. Pharmacol., 2000, 57, 568; DOI: https://doi.org/10.1124/mol.57.3.568.

    Article  CAS  Google Scholar 

  12. Zh. Wang, D. Yang, A. K. Mohanakrishnan, Ph. E. Fanwick, P. Nampoothiri, E. Hamel, M. Cushman, J. Med. Chem., 2000, 43, 2419; DOI: https://doi.org/10.1021/jm0001119.

    Article  CAS  Google Scholar 

  13. E. A. Lavrushkina, V. M. Shibilev, N. A. Zefirov, E. F. Shevtsova, P. N. Shevtsov, S. A. Kuznetsov, O. N. Zefirova, Russ. Chem. Bull., 2020, 69, 558; DOI: https://doi.org/10.1007/s11172-020-2798-3.

    Article  CAS  Google Scholar 

  14. I. Minoura, E. Katayama, K. Sekimoto, E. Muto, Biophys. J., 2010, 98, 1589, DOI: https://doi.org/10.1016/j.bpj.2009.12.4323.

    Article  CAS  Google Scholar 

  15. A. Varidaki, Y. Hong, E. Coffey, Front. Cell. Neurosci., 2018, 12, 226; DOI: https://doi.org/10.3389/fncel.2018.00226.

    Article  Google Scholar 

  16. M. Bianchi, J. J. Hagan, C. A. Heidbreder, Curr. Drug Targets CNS Neurol. Disord., 2005, 4, 597; DOI: https://doi.org/10.2174/156800705774322012.

    Article  CAS  Google Scholar 

  17. N. A. Zefirov, A. Glaßl, E. V. Radchenko, A. N. Borovyk, V. V. Stanishevsky, E. R. Milaeva, S. A. Kuznetsov, O. N. Zefirova, Mendeleev Commun., 2022, 32, 173; DOI: https://doi.org/10.1016/j.mencom.2022.03.006.

    Article  CAS  Google Scholar 

  18. N. A. Zefirov, A. V. Mamaeva, A. I. Krasnoperova, Yu. A. Evteeva, E. R. Milaeva, S. A. Kuznetsov, O. N. Zefirova, Russ. Chem. Bull., 2021, 70, 559; DOI: https://doi.org/10.1007/s11172-021-3123-5.

    Article  Google Scholar 

  19. N. A. Zefirov, A. V. Mamaeva, E. V. Radchenko, E. R. Milaeva, S. A. Kuznetsov, O. N. Zefirova, Biomed. Khim. [Biomed. Chem.], 2021, 67, 289; DOI: https://doi.org/10.18097/PBMC20216703289 (in Russian).

    Article  CAS  Google Scholar 

  20. R. Salomon-Ferrer, D. A. Case, R. C. Walker, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3, 198; DOI: https://doi.org/10.1002/wcms.1121.

    Article  CAS  Google Scholar 

  21. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem., 2004, 25, 1605; DOI: https://doi.org/10.1002/jcc.20084.

    Article  CAS  Google Scholar 

  22. O. Trott, A. J. Olson, J. Comput. Chem., 2010, 31, 455; DOI: https://doi.org/10.1002/jcc.21334.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Zefirova.

Additional information

The investigations were performed using facilities of the Multiple-access Center of the Institute of Physiologically Active Compounds of the Russian Academy of Sciences (IPAC RAS).

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment (Program No. 121021000105-7). The biological testing of compounds was carried out within the framework of the state assignment to the IPAC RAS, 2022 (FFSN-2021-0005).

All experiments on animals were performed in compliance with the regulations of the Russian Federation on the ethical principles and guidelines for the use of animals for scientific purposes (GOST 33044-2014) and in accordance with the Order No. 199n of the Ministry of Health of the Russian Federation, January 1, 2016.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2519–2524, November, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zefirov, N.A., Korotkova, P.D., Shevtsova, E.F. et al. Role of structural components of the 2-methoxyestradiol—chlorambucil conjugate in microtubule stabilization. Russ Chem Bull 71, 2519–2524 (2022). https://doi.org/10.1007/s11172-022-3682-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3682-0

Key words

Navigation