Skip to main content
Log in

Ring expansion of donor—acceptor cyclopropanes bearing arylcarbamoyl group into 1,5-diarylpyrrolidin-2-ones

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The rearrangement of 2,N-diaryl-1-carbamoylcyclopropanecarboxylates upon their treatment with titanium(iv) chloride was found to proceed as ring expansion affording 1,5-diaryl-2-oxopyrrolidine-3-carboxylates. In the resulting products, the ester group can be easily removed via either the Krapcho reaction or alkaline hydrolysis followed by the thermal decarboxylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xia, X. Liu, X. Feng, Angew. Chem. Int. Ed., 2021, 60, 9192; DOI: https://doi.org/10.1002/anie.202006736.

    Article  CAS  Google Scholar 

  2. K. Ghosh, S. Das, Org. Biomol. Chem., 2021, 19, 965; DOI: https://doi.org/10.1039/d0ob02437f.

    Article  CAS  Google Scholar 

  3. A. U. Augustin, D. B. Werz, Acc. Chem. Res., 2021, 54, 1528; DOI: https://doi.org/10.1021/acs.accounts.1c00023.

    Article  CAS  Google Scholar 

  4. T. Sarkar, B. K. Das, K. Talukdar, T. A. Shah, T. Punniyamurthy, ACS Omega, 2020, 5, 26316; DOI: https://doi.org/10.1021/acsomega.0c03856.

    Article  CAS  Google Scholar 

  5. P. Singh, R. K. Varshnaya, R. Dey, P. Banerjee, Adv. Synth. Catal., 2020, 362, 1447; DOI: https://doi.org/10.1002/adsc.201901332.

    Article  CAS  Google Scholar 

  6. V. Pirenne, B. Muriel, J. Waser, Chem. Rev., 2021, 121, 227; DOI: https://doi.org/10.1021/acs.chemrev.0c00109.

    Article  CAS  Google Scholar 

  7. O. A. Ivanova, I. V. Trushkov, Chem. Rec., 2019, 19, 2189; DOI: https://doi.org/10.1002/tcr.201800166.

    Article  CAS  Google Scholar 

  8. Y. V. Tomilov, L. G. Menchikov, R. A. Novikov, O. A. Ivanova, I. V. Trushkov, Russ. Chem. Rev., 2018, 87, 201; DOI: https://doi.org/10.1070/rcr4787.

    Article  CAS  Google Scholar 

  9. B. L. Pagenkopf, N. Vemula, Eur. J. Org. Chem., 2017, 2561; DOI: https://doi.org/10.1002/ejoc.201700201.

  10. E. M. Budynina, K. L. Ivanov, I. D. Sorokin, M. Ya. Melnikov, Synthesis, 2017, 49, 3035; DOI: https://doi.org/10.1055/s-0036-1589021.

    Article  CAS  Google Scholar 

  11. H. K. Grover, M. Emmett, M. A. Kerr, Org. Biomol. Chem., 2015, 13, 655; DOI: https://doi.org/10.1039/c4ob02117g.

    Article  CAS  Google Scholar 

  12. R. A. Novikov, Y. V. Tomilov, Mendeleev Commun., 2015, 25, 1; DOI: https://doi.org/10.1016/j.mencom.2015.01.001.

    Article  CAS  Google Scholar 

  13. F. de Nanteuil, F. De Simone, R. Frei, F. Benfatti, E. Serrano, J. Waser, Chem. Commun., 2014, 50, 10912; DOI: https://doi.org/10.1039/c4cc03194f.

    Article  CAS  Google Scholar 

  14. T. F. Schneider, J. Kaschel, D. B. Werz, Angew. Chem. Int. Ed., 2014, 53, 5504; DOI: https://doi.org/10.1002/anie.201309886.

    Article  CAS  Google Scholar 

  15. M. Ya. Mel’nikov, E. M. Budynina, O. A. Ivanova, I. V. Trushkov, Mendeleev Commun., 2011, 21, 293; DOI: https://doi.org/10.1016/j.mencom.2011.11.001.

    Article  Google Scholar 

  16. P. Tang, Y. Qin, Synthesis, 2012, 44, 2969; DOI: https://doi.org/10.1055/s-0032-1317011.

    Article  CAS  Google Scholar 

  17. Z. Wang, Synlett, 2012, 23, 2311; DOI: https://doi.org/10.1055/s-0032-1317082.

    Article  CAS  Google Scholar 

  18. H. U. Reissig, R. Zimmer, Chem. Rev., 2003, 103, 1151; DOI: https://doi.org/10.1021/cr010016n.

    Article  CAS  Google Scholar 

  19. R. A. Novikov, V. A. Korolev, V. P. Timofeev, Y. V. Tomilov, Tetrahedron Lett., 2011, 52, 4996; DOI: https://doi.org/10.1016/j.tetlet.2011.07.001.

    Article  CAS  Google Scholar 

  20. A. O. Chagarovskiy, O. A. Ivanova., E. R. Rakhmankulov, E. M. Budynina, I. V. Trushkov, M. Ya. Melnikov, Adv. Synth. Catal., 2010, 352, 3179; DOI: https://doi.org/10.1002/adsc.201000636.

    Article  CAS  Google Scholar 

  21. C. H. Lin, D. Pursley, J. E. Klein, J. Teske, J. A. Allen, F. Rami, A. Koehn, B. Plietker, Chem. Sci., 2015, 6, 7034; DOI: https://doi.org/10.1039/c5sc02342d.

    Article  CAS  Google Scholar 

  22. H. Nambu, N. Ono, T. Yakura, Synthesis, 2016, 48, 1892; DOI: https://doi.org/10.1055/s-0035-1561590.

    Article  Google Scholar 

  23. O. A. Ivanova, A. O. Chagarovskiy, A. N. Shumsky, V. D. Krasnobrov, I. I. Levina, I. V. Trushkov, J. Org. Chem., 2018, 83, 543; DOI: https://doi.org/10.1021/acs.joc.7b02351.

    Article  CAS  Google Scholar 

  24. A. Delbrassinne, M. Richald, J. Janssens, R. Robiette, Eur. J. Org. Chem., 2021, 2862; DOI: https://doi.org/10.1002/ejoc.202100430.

  25. M. A. Cavitt, L. H. Phun, S. France, Chem. Soc. Rev., 2014, 43, 804; DOI: https://doi.org/10.1039/c3cs60238a.

    Article  CAS  Google Scholar 

  26. M. C. Martin, R. Shenje, S. France, Isr. J. Chem., 2016, 56, 499; DOI: https://doi.org/10.1002/ijch.201500099.

    Article  CAS  Google Scholar 

  27. A. E. Vartanova, A. Yu. Plodukhin, N. K. Ratmanova, I. A. Andreev, M. N. Anisimov, N. B. Gudimchuk, V. B. Rybakov, I. I. Levina, O. A. Ivanova, I. V. Trushkov, I. V. Alabugin, J. Am. Chem. Soc., 2021, 143, 13952; DOI: https://doi.org/10.1021/jacs.1c07088.

    Article  CAS  Google Scholar 

  28. A. Valji, R. Berger, C. A. Stump, K. A. S. Schlegel, J. J. Mulhearn, T. J. Greshock, D. Wang, M. E. Fraley, K. G. Jones, Worldwide Pat. WO2017/222951.

  29. A. Valji, R. Berger, C. A. Stump, K. A. S. Schlegel, J. J. Mulhearn, T. J. Greshock, A. T. Ginetti, D. Wang, S. J. Stachel, M. E. Fraley, Worldwide Pat. WO2017/222950.

  30. M. A. Mandegar, S. Patel, P. Ding, U. Bhatt, M. Holan, J. Lee, Y. Li, J. Medina, A. Nerurkar, F. Seidl, D. Sperandio, T. Widjaja, Worldwide Pat. WO2021/127643.

  31. P. A. Carpino, M. A. Sanner, Worldwide Pat. WO2007/20502.

  32. H. Liu, X. He, D. Phillips, X. Zhu, K. Yang, T. Lau, B. Wu, Y. Xie, T. N. Nguyen, X. Wang, Worldwide Pat. WO2008/76754.

  33. H. Liu, X. He, D. Phillips, X. Zhu, K. Yang, T. Lau, B. Wu, Y. Xie, T. N. Nguyen, X. Wang, US Pat. 2020/234365.

  34. P. Pevarello, M. G. Brasca, P. Orsini, G. Traquandi, A. Longo, M. Nesi, F. Orzi, C. Piutti, P. Sansonna, M. Varasi, A. Cameron, A. Vulpetti, F. Roletto, R. Alzani, M. Ciomei, C. Albanese, W. Pastori, A. Marsiglio, E. Pesenti, F. Fiorentini, J.R. Bischoff, C. Mercurio, J. Med. Chem., 2005, 48, 2944; DOI: https://doi.org/10.1021/jm0408870.

    Article  CAS  Google Scholar 

  35. H. Bregman, N. Chakka, A. Guzman-Perez, H. Gunaydin, Y. Gu, X. Huang, V. Berry, J. Liu, Y. Teffera, L. Huang, B. Egge, E. L. Mullady, S. Schneider, P. S. Andrews, A. Mishra, J. Newcomb, R. Serafino, C. A. Strathdee, S. M. Turci, C. Wilson, E. F. DiMauro, J. Med. Chem., 2013, 56, 4320; DOI: https://doi.org/10.1021/jm4000038.

    Article  CAS  Google Scholar 

  36. U. Heiser, D. Ramsbeck, R. Sommer, A. Meyer, T. Hoffmann, L. Boehme, H.-U. Demuth, US Pat. 2011/92501.

  37. E. C. Lee, M. Tu, B. D. Stevens, J. Bian, G. Aspnes, C. Perreault, M. F. Sammons, S. W. Wright, J. Litchfield, A. S. Kalgutkar, R. Sharma, M. T. Didiuk, D. C. Ebner, K. J. Filipski, J. Brown, K. Atkinson, J. A. Pfefferkorn, A. Guzman-Perez, Bioorg. Med. Chem. Lett., 2014, 24, 839; DOI: https://doi.org/10.1016/j.bmcl.2013.12.090.

    Article  CAS  Google Scholar 

  38. K. L. Ivanov, E. V. Villemson, E. M. Budynina, O. A. Ivanova, I. V. Trushkov, M. Ya. Melnikov, Chem. Eur. J., 2015, 21, 4975; DOI: https://doi.org/10.1002/chem.201405551.

    Article  CAS  Google Scholar 

  39. E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc., 1965, 86, 1353; DOI: https://doi.org/10.1021/ja01084a034.

    Article  Google Scholar 

  40. W. Fraser, C. J. Suckling, H. C. S. Wood, J. Chem. Soc., Perkin Trans. 1, 1990, 3137; DOI: https://doi.org/10.1039/P19900003137.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Trushkov or O. A. Ivanova.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 21-13-00395).

NMR spectra were recorded at the Laboratory of Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University. IR and mass spectra were recorded at the Center for Collective Use of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Based on the materials of the VI North Caucasus Organic Chemistry Symposium 2022 NCOCS-2022 (April 18–22, 2022, Stavropol, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2431–2440, November, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vartanova, A.E., Plodukhin, A.Y., Boichenko, M.A. et al. Ring expansion of donor—acceptor cyclopropanes bearing arylcarbamoyl group into 1,5-diarylpyrrolidin-2-ones. Russ Chem Bull 71, 2431–2440 (2022). https://doi.org/10.1007/s11172-022-3671-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3671-3

Key words

Navigation