Skip to main content

Advertisement

Log in

Synthesis and study of the biological activity of thiourea-containing amiridine derivatives as potential multi-target drugs for the treatment of Alzheimer’s disease

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The synthesis of new compounds based on the domestic drug amiridine modified with derivatives of N-mono- and N,N-disubstituted thiourea is described. The compounds were investigated for the anticholinesterase and antioxidant activities and for the ability to inhibit the self-aggregation of β-amyloid (Aβ42). The structure—activity relationships were analyzed. The observed effects were consistent with the results of molecular docking of the compounds into cholinesterases and Aβ42. The compounds that effectively inhibit butyrylcholinesterase and demonstrate high antioxidant and antiaggregant activities were identified. The results show promise for further development of this class of compounds as potential multifunctional agents for the treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cummings, G. Lee, A. Ritter, M. Sabbagh, K. Zhong, Alzheimer’s Dementia, 2019, 5, 272; DOI: https://doi.org/10.1016/j.trci.2019.05.008.

    Google Scholar 

  2. M. C. Carreiras, E. Mendes, M. J. Perry, A. P. Francisco, J. Marco-Contelles, Curr. Top. Med. Chem., 2013, 13, 1745; DOI: https://doi.org/10.2174/15680266113139990135.

    Article  CAS  Google Scholar 

  3. Y. Huang, L. Mucke, Cell, 2012, 148, 1204; DOI: https://doi.org/10.1016/j.cell.2012.02.040.

    Article  CAS  Google Scholar 

  4. L. Ismaili, B. Refouvelet, M. Benchekroun, S. Brogi, M. Brindisi, S. Gemma, G. Campiani, S. Filipic, D. Agbaba, G. Esteban, M. Unzeta, K. Nikolic, S. Butini, J. Marco-Contelles, Prog. Neurobiol., 2017, 151, 4; DOI: https://doi.org/10.1016/j.pneurobio.2015.12.003.

    Article  CAS  Google Scholar 

  5. K. Spilovska, J. Korabecny, E. Nepovimova, R. Dolezal, E. Mezeiova, O. Soukup, K. Kuca, Curr. Top. Med. Chem., 2017, 17, 1006; DOI: https://doi.org/10.2174/1568026605666160927152728.

    Article  CAS  Google Scholar 

  6. F. Mesiti, D. Chavarria, A. Gaspar, S. Alcaro, F. Borges, Eur. J. Med. Chem., 2019, 181, 111572; DOI: https://doi.org/10.1016/j.ejmech.2019.111572.

    Article  CAS  Google Scholar 

  7. M. Girek, P. Szymański, Chem. Pap., 2019, 73, 269; DOI: https://doi.org/10.1007/s11696-018-0590-8.

    Article  CAS  Google Scholar 

  8. R. T. Kareem, F. Abedinifar, E. A. Mahmood, A. G. Ebadi, F. Rajabi, E. Vessally, RSC Adv., 2021, 11, 30781; DOI: https://doi.org/10.1039/d1ra03718h.

    Article  CAS  Google Scholar 

  9. E. E. Bukatina, I. V. Grigoréva, E. I. Sokolćhik, Neurosci. Behav. Physiol., 1993, 23, 83; DOI: https://doi.org/10.1007/BF01182643.

    Article  CAS  Google Scholar 

  10. V. Kluša, J. Rumaks, Ñ. Karajeva, Proc. Latv. Acad. Sci., Sect. B, 2008, 62, 85; DOI: https://doi.org/10.2478/v10046-008-0024-z.

    Google Scholar 

  11. I. V. Damulin, D. A. Stepkina, A. B. Lokshina, Zhurn. Nevrologii i Psikhiatrii im. S. S. Korsakova [S. S. Korsakov J. Neurol. and Psych.], 2011, 111, No. 2, 40 (in Russian).

    CAS  Google Scholar 

  12. S. A. Zhivolupov, L. S. Onishchenko, N. A. Rashidov, I. N. Samartsev, E. V. Yakovlev, Zhurn. Nevrologii i Psikhiatrii im. S. S. Korsakova [S. S. Korsakov J. Neurol. and Psych.], 2018, 118, No. 2, 58–64; DOI: https://doi.org/10.17116/jnevro20181182158-64 (in Russian).

    Article  CAS  Google Scholar 

  13. M. M. Oros, Int. J. Neurol., 2018, 23; DOI: https://doi.org/10.22141/2224-0713.6.100.2018.146454.

  14. I. V. Litvinenko, S. A. Zhivolupov, I. N. Samartsev, A. Y. Kravchuk, M. N. Vorobyova, E. V. Yakovlev, Y. S. Butakova, Neurosci. Behav. Physiol., 2020, 50, 1112; DOI: https://doi.org/10.1007/s11055-020-01012-y.

    Article  CAS  Google Scholar 

  15. J. Kojima, K. Onodera, M. Ozeki, K. Nakayama, CNS Drug Rev., 1998, 4, 247; DOI: https://doi.org/10.1111/j.1527-3458.1998.tb00067.x.

    Article  CAS  Google Scholar 

  16. P. N. Shevtsov, E. F. Shevtsova, G. Sh. Burbaeva, S. O. Bachurin, Bull. Exp. Biol. Med., 2014, 156, 768; DOI: https://doi.org/10.1007/s10517-014-2445-9.

    Article  CAS  Google Scholar 

  17. G. F. Makhaeva, S. V. Lushchekina, N. V. Kovaleva, T.Yu. Astakhova, N. P. Boltneva, E. V. Rudakova, O. G. Serebryakova, A. N. Proshin, I. V. Serkov, T. P. Trofimova, V. A. Tafeenko, E. V. Radchenko, V. A. Palyulin, V. P. Fisenko, J. Korábečný, O. Soukup, R. J. Richardson, Bioorg. Chem., 2021, 112, 104974; DOI: https://doi.org/10.1016/j.bioorg.2021.104974.

    Article  CAS  Google Scholar 

  18. S. Yoshida, N. Suzuki, Eur. J. Pharmacol., 1993, 250, 117; DOI: https://doi.org/10.1016/0014-2999(93)90628-u.

    Article  CAS  Google Scholar 

  19. A. M. Zhidkova, A. S. Berlyand, A. Z. Knizhnik, E. F. Lavretskaya, T. N. Robakidze, S. A. Sukhanova, T. P. Mufazalova, Pharm. Chem. J., 1989, 23, 709; DOI: https://doi.org/10.1007/BF00764431.

    Article  Google Scholar 

  20. A. M. Zhidkova, M. S. Goizman, A. S. Berlyand, A. Z. Knizhnik, L. S. Khabarova, Khim.-Farm. Zhurn. [Pharm. Chem. J.], 1989, 23, 1401 (in Russian).

    CAS  Google Scholar 

  21. G. F. Makhaeva, N. V. Kovaleva, N. P. Boltneva, E. V. Rudakova, S. V. Lushchekina, T. Y. Astakhova, I. V. Serkov, A. N. Proshin, E. V. Radchenko, V. A. Palyulin, J. Korabecny, O. Soukup, S. O. Bachurin, R. J. Richardson, Molecules, 2022, 27, 1060; DOI: https://doi.org/10.3390/molecules27031060.

    Article  CAS  Google Scholar 

  22. S. Bachurin, S. Tkachenko, I. Baskin, N. Lermontova, T. Mukhina, L. Petrova, A. Ustinov, A. Proshin, V. Grigoriev, N. Lukoyanov, V. Palyulin, N. Zefirov, Ann. N. Y. Acad. Sci., 2001, 939, 219; DOI: https://doi.org/10.1111/j.1749-6632.2001.tb03629.x.

    Article  CAS  Google Scholar 

  23. G. L. Perlovich, A. N. Proshin, T. V. Volkova, S. V. Kurkov, V. V. Grigoriev, L. N. Petrova, S. O. Bachurin, J. Med. Chem., 2009, 52, 1845; DOI: https://doi.org/10.1021/jm8012882.

    Article  CAS  Google Scholar 

  24. H. Pavan Kumar, H. K. Kumara, R. Suhas, D. Channe Gowda, Arch. Pharm., 2021, 354, e2000468; DOI: https://doi.org/10.1002/ardp.202000468.

    Article  CAS  Google Scholar 

  25. B. Ozgeris, J. Antibiot., 2021, 74, 233; DOI: https://doi.org/10.1038/s41429-020-00399-7.

    Article  CAS  Google Scholar 

  26. D. Q. Huong, M. V. Bay, P. C. Nam, J. Mol. Liq., 2021, 340, 117149; DOI: https://doi.org/10.1016/j.molliq.2021.117149.

    Article  CAS  Google Scholar 

  27. M. Bajda, S. Filipek, Bioorg. Med. Chem. Lett., 2017, 27, 212; DOI: https://doi.org/10.1016/j.bmcl.2016.11.072.

    Article  CAS  Google Scholar 

  28. T. Mohamed, P. P. N. Rao, Eur. J. Med. Chem., 2017, 126, 823; DOI: https://doi.org/10.1016/j.ejmech.2016.12.005.

    Article  CAS  Google Scholar 

  29. G. F. Makhaeva, E. V. Rudakova, N. V. Kovaleva, S. V. Lushchekina, N. P. Boltneva, A. N. Proshin, E. V. Shchegolkov, Ya. V. Burgart, V. I. Saloutin, Russ. Chem. Bull., 2019, 68, 967; DOI: https://doi.org/10.1007/s11172-019-2507-2.

    Article  CAS  Google Scholar 

  30. P. Taylor, S. Lappi, Biochemistry, 1975, 14, 1989; DOI: https://doi.org/10.1021/bi00680a029.

    Article  CAS  Google Scholar 

  31. M. Bartolini, C. Bertucci, V. Cavrini, V. Andrisano, Biochem. Pharmacol., 2003, 65, 407; DOI: https://doi.org/10.1016/s0006-2952(02)01514-9.

    Article  CAS  Google Scholar 

  32. P. Munoz-Ruiz, L. Rubio, E. Garcia-Palomero, I. Dorronsoro, M. Del Monte-Millan, R. Valenzuela, P. Usan, C. De Austria, M. Bartolini, V. Andrisano, A. Bidon-Chanal, M. Orozco, F. J. Luque, M. Medina, A. Martinez, J. Med. Chem., 2005, 48, 7223; DOI: https://doi.org/10.1021/jm0503289.

    Article  CAS  Google Scholar 

  33. H. Safarizadeh, Z. Garkani-Nejad, J. Mol. Graph. Model., 2019, 87, 129; DOI: https://doi.org/10.1016/j.jmgm.2018.11.019.

    Article  CAS  Google Scholar 

  34. S. Jokar, M. Erfani, O. Bavi, S. Khazaei, M. Sharifzadeh, M. Hajiramezanali, D. Beiki, A. Shamloo, Bioorg. Chem., 2020, 102, 104050; DOI: https://doi.org/10.1016/j.bioorg.2020.104050.

    Article  CAS  Google Scholar 

  35. J. Wang, P. Cai, X.-L. Yang, F. Li, J.-J. Wu, L.-Y. Kong, X.-B. Wang, Eur. J. Med. Chem., 2017, 139, 68; DOI: https://doi.org/10.1016/j.ejmech.2017.07.077.

    Article  CAS  Google Scholar 

  36. M. P. Williamson, Y. Suzuki, N. T. Bourne, T. Asakura, Biochem. J., 2006, 397, 483; DOI: https://doi.org/10.1042/BJ20060293.

    Article  CAS  Google Scholar 

  37. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radical Biol. Med., 1999, 26, 1231; DOI: https://doi.org/10.1016/s0891-5849(98)00315-3.

    Article  CAS  Google Scholar 

  38. I. F. F. Benzie, J. J. Strain, Methods Enzymol., 1999, 299, 15; DOI: https://doi.org/10.1016/s0076-6879(99)99005-5.

    Article  CAS  Google Scholar 

  39. S. Meir, J. Kanner, B. Akiri, S. Philosoph-Hadas, J. Agric. Food Chem., 1995, 43, 1813; DOI: https://doi.org/10.1021/jf00055a012.

    Article  CAS  Google Scholar 

  40. G. F. Makhaeva, E. V. Radchenko, V. A. Palyulin, E. V. Rudakova, A.Yu. Aksinenko, V. B. Sokolov, N. S. Zefirov, R. J. Richardson, Chem.-Biol. Interact., 2013, 203, 231; DOI: https://doi.org/10.1016/j.cbi.2012.10.012.

    Article  CAS  Google Scholar 

  41. G. F. Makhaeva, E. V. Rudakova, O. G. Serebryakova, A.Yu. Aksinenko, S. V. Lushchekina, S. O. Bachurin, R. J. Richardson, Chem.-Biol. Interact., 2016, 259, 332; DOI: https://doi.org/10.1016/j.cbi.2016.05.002.

    Article  CAS  Google Scholar 

  42. G. L. Ellman, K. D. Courtney, V. Andres, Jr., R. M. Feather-Stone, Biochem. Pharmacol., 1961, 7, 88; DOI: https://doi.org/10.1016/0006-2952(61)90145-9.

    Article  CAS  Google Scholar 

  43. G. F. Makhaeva, N. V. Kovaleva, N. P. Boltneva, S. V. Lushchekina, T.Yu. Astakhova, E. V. Rudakova, A. N. Proshin, I. V. Serkov, E. V. Radchenko, V. A. Palyulin, S. O. Bachurin, R. J. Richardson, Molecules, 2020, 25, 3915; DOI: https://doi.org/10.3390/molecules25173915.

    Article  CAS  Google Scholar 

  44. G. F. Makhaeva, N. V. Kovaleva, N. P. Boltneva, S. V. Lushchekina, E. V. Rudakova, T. S. Stupina, A. A. Terentiev, I. V. Serkov, A. N. Proshin, E. V. Radchenko, V. A. Palyulin, S. O. Bachurin, R. J. Richardson, Bioorg. Chem., 2020, 94, 103387; DOI: https://doi.org/10.1016/j.bioorg.2019.103387.

    Article  CAS  Google Scholar 

  45. M. Biancalana, S. Koide, Biochim. Biophys. Acta, Proteins Proteomis, 2010, 1804, 1405; DOI: https://doi.org/10.1016/j.bbapap.2010.04.001.

    Article  CAS  Google Scholar 

  46. I. F. Benzie, J. J. Strain, Anal. Biochem., 1996, 239, 70; DOI: https://doi.org/10.1006/abio.1996.0292.

    Article  CAS  Google Scholar 

  47. X. Pan, H. Wang, C. Li, J. Z. H. Zhang, C. Ji, J. Chem. Inf. Model., 2021, 61, 3159; DOI: https://doi.org/10.1021/acs.jcim.1c00075.

    Article  CAS  Google Scholar 

  48. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347; DOI: https://doi.org/10.1002/jcc.540141112.

    Article  CAS  Google Scholar 

  49. P.-O. Löwdin, in Advances in Quantum Chemistry, Ed. P.-O. Löwdin, Academic Press, New York, London, 1970, p. 185.

  50. J. Cheung, M. J. Rudolph, F. Burshteyn, M. S. Cassidy, E. N. Gary, J. Love, M. C. Franklin, J. J. Height, J. Med. Chem., 2012, 55, 10282; DOI: https://doi.org/10.1021/jm300871x.

    Article  CAS  Google Scholar 

  51. S. V. Lushchekina, G. F. Makhaeva, D. A. Novichkova, I. V. Zueva, N. V. Kovaleva, R. J. Richardson, Supercomput. Front. Innov., 2018, 5, 89; DOI: https://doi.org/10.14529/jsfi1804.

    Google Scholar 

  52. I. Zueva, S. Lushchekina, P. Shulnikova, O. Lenina, K. Petrov, E. Molochkina, P. Masson, Chem. Biol. Interact., 2021, 348, 109646; DOI: https://doi.org/10.1016/j.cbi.2021.109646.

    Article  CAS  Google Scholar 

  53. Y. Nicolet, O. Lockridge, P. Masson, J. C. Fontecilla-Camps, F. Nachon, J. Biol. Chem., 2003, 278, 41141; DOI: https://doi.org/10.1074/jbc.M210241200.

    Article  CAS  Google Scholar 

  54. P. Masson, S. Lushchekina, L. M. Schopfer, O. Lockridge, Biochem. J., 2013, 454, 387; DOI: https://doi.org/10.1042/bj20130389.

    Article  CAS  Google Scholar 

  55. O. Crescenzi, S. Tomaselli, R. Guerrini, S. Salvadori, A. M. D’Ursi, P. A. Temussi, D. Picone, Eur. J. Biochem., 2002, 269, 5642; DOI: https://doi.org/10.1046/j.1432-1033.2002.03271.x.

    Article  CAS  Google Scholar 

  56. H. Li, A. D. Robertson, J. H. Jensen, Proteins, 2005, 61, 704; DOI: https://doi.org/10.1002/prot.20660.

    Article  CAS  Google Scholar 

  57. G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. Olson, J. Comput. Chem., 1998, 19, 1639; DOI: https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b.

    Article  CAS  Google Scholar 

  58. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem., 2009, 30, 2785; DOI: https://doi.org/10.1002/jcc.21256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Makhaeva.

Additional information

The study was carried out within the state assignment of the Institute of Physiologically Active Compounds, Russian Academy of Sciences (No. FFSN-2021-0005) and was partially supported by the Russian Foundation for Basic Research (Project No. 19-53-26016a). Molecular modeling was carried out using the shared research facilities of the HPC computing resources at Lomonosov Moscow State University.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Based on the materials of the V Russian Conference on Medicinal Chemistry with international participation “MedChem-Russia 2021” (May 16–19, 2022, Volgograd, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2404–2415, November, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhaeva, G.F., Proshin, A.N., Kovaleva, N.V. et al. Synthesis and study of the biological activity of thiourea-containing amiridine derivatives as potential multi-target drugs for the treatment of Alzheimer’s disease. Russ Chem Bull 71, 2404–2415 (2022). https://doi.org/10.1007/s11172-022-3668-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3668-y

Key words

Navigation