Skip to main content
Log in

Reactions of dimedone and alkyl orthoformates with and without activators

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The experimental and theoretical studies of the reactions of 5,5-dimethylcyclohexane-1,3-dione (dimedone) with trimethyl- and triethyl orthoformates under various conditions were carried out. It was demonstrated that in the absence of activators the reactions of substrate with ortho esters proceed exclusively as C-C coupling, and in the presence of Brønsted (H2SO4) or Lewis (BF3·Et2O) acids the formation of both C-C and C-O coupling products is observed. The energy consumptions of all reactions in accordance with proposed mechanisms were estimated using quantum chemical calculations by the B3LYP/6-311++G(d,p) method in terms of PCM/MeCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Kovalev, I. A. Khotina, Russ. Chem. Bull., 2021, 70, 1994; DOI: https://doi.org/10.1007/s11172-021-3307-2.

    Article  CAS  Google Scholar 

  2. N. N. Balaneva, O. P. Shestak, V. L. Novikov, V. P. Glazunov, Russ. Chem. Bull., 2021, 70, 1584; DOI: https://doi.org/10.1007/s11172-021-3255-7.

    Article  CAS  Google Scholar 

  3. I. A. Khotina, O. A. Filippov, A. I. Kovalev, Mendeleev Commun., 2020, 30, 366; DOI: https://doi.org/10.1016/j.mencom.2020.05.035.

    Article  CAS  Google Scholar 

  4. A. I. Kovalev, A. V. Pastukhov, E. S. Tkachenko, Z. S. Klemenkova, I. R. Kuvshinov, I. A. Khotina, Polym. Sci. Ser. C (Engl. Transl.), 2020, 62, 205; DOI: https://doi.org/10.1134/S1811238220020071.

    Article  CAS  Google Scholar 

  5. G. A. Selivanova, E. V. Tretyakov, Russ. Chem. Bull., 2020, 69, 838; DOI: https://doi.org/10.1007/s11172-020-2842-3.

    Article  CAS  Google Scholar 

  6. Z. Khademi, K. Nikoofar, RSC Adv., 2020, 10, 30314; DOI: https://doi.org/10.1039/d0ra05276k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Z. Nazarian, M. Dabiri, Chemistry Select, 2020, 5, 4394; DOI: https://doi.org/10.1002/slct.201903901.

    CAS  Google Scholar 

  8. A. V. Komkov, T. V. Potapova, M. I. Zuev, S. V. Baranin, Yu. N. Bubnov, Russ. Chem. Bull., 2019, 68, 365; DOI: https://doi.org/10.1007/s11172-019-2394-6.

    Article  CAS  Google Scholar 

  9. Y. Chen, Chem.-Eur. J., 2019, 25, 3405; DOI: https://doi.org/10.1002/chem.201803642.

    Article  CAS  PubMed  Google Scholar 

  10. K. Undheim, Synthesis, 2017, 49, 705; DOI: https://doi.org/10.1055/s-0036-1588339.

    CAS  Google Scholar 

  11. M. B. Gazizov, S. Yu. Ivanova, N. Yu. Bashkirtseva, Sh. N. Ibragimov, R. A. Khairullin, N. N. Gazizov, A. D. Kostenko, Russ. J. Gen. Chem. (Engl. Transl.), 2017, 87, 2783; DOI: https://doi.org/10.1134/S1070363217120052.

    Article  CAS  Google Scholar 

  12. F. N. Latypova, F. Sh. Vil’danov, R. R. Chanyshev, S. S. Zlotsky, Izv. Vuz. Khim. Khim. Teknol. (in Russian), 2015, 58, 3; journals.isuct.ru/public/journals/2/2015/v58-_n08_2015_full.pdf.

    CAS  Google Scholar 

  13. R. A. Fernandes, A. K. Chowdhury, P. Kattanguru, Eur. J. Org. Chem., 2014, 2833; DOI: https://doi.org/10.1002/ejoc.201301033.

  14. Yu. S. Kudyakova, D. N. Bazhin, M. V. Goryaeva, Ya. V. Burgart, V. I. Saloutin, Russ. Chem. Rev. (Engl. Transl.), 2014, 83, 120; DOI: https://doi.org/10.1070/RC2014v083n02ABEH004388.

    Article  Google Scholar 

  15. R. G. Jones, J. Am. Chem. Soc., 1952, 74, 4889; DOI: https://doi.org/10.1021/ja01139a-046.

    Article  CAS  Google Scholar 

  16. T.-L. Su, J.-T. Huang, T.-Ch. Chou, G. M. Otter, F. M. Sirotnak, K. A. Watanabe, J. Med. Chem., 1988, 31, 1209; DOI: https://doi.org/10.1021/jm00401a023.

    Article  CAS  PubMed  Google Scholar 

  17. Pat. WO 2011113789; Chem. Abstr., 2011, 155, 431861.

  18. M. V. Pryadeina, Ya. V. Burgart, V. I. Saloutin, P. A. Slepukhin, O. N. Kazheva, G. V. Shilov, O. A. D’yachenko, O. N. Chupakhin, Russ. J. Org. Chem. (Engl. Transl.), 2007, 43, 945; DOI: https://doi.org/10.1134/S107042800707001.

    Article  CAS  Google Scholar 

  19. V. I. Saloutin, Z. E. Skryabina, I. T. Bazyl’, O. N. Chupakhin, J. Fluorine Chem., 1993, 65, 37; DOI: https://doi.org/10.1016/S0022-1139(00)80470-4.

    Article  CAS  Google Scholar 

  20. E. B. Knott, J. Chem. Soc., 1954, 1482; DOI: https://doi.org/10.1039/JR9540001482.

  21. E. G. Meek, J. H. Turnbull, W. Wilson, J. Chem. Soc., 1953, 811; DOI: https://doi.org/10.1039/JR9530000811.

  22. R. M. Mohareb, F. M. Manhi, M. A. A. Mahmoud, A. Abdelwahab, Med. Chem. Res., 2020, 29, 1536; DOI: https://doi.org/10.1007/s00044-020-02579-4.

    Article  CAS  Google Scholar 

  23. A. de Groot, B. J. M. Jansen, Tetrahedron Lett., 1975, 16, 3407; DOI: https://doi.org/10.1016/s0040-4039(00)91410-2.

    Article  Google Scholar 

  24. A. A. Akhrem, F. A. Lakhvich, V. A. Khripach, I. B. Klebanovich, Chem. Heterocycl. Compd. (Engl. Transl.), 1975, 11, 285; DOI: https://doi.org/10.1007/BF00470070.

    Article  Google Scholar 

  25. T. D. Kazarinova, L. I. Markova, V. G. Kharchenko, Chem. Heterocycl. Compd. (Engl. Transl.), 1994, 30, 567; DOI: https://doi.org/10.1007/BF01169836.

    Article  Google Scholar 

  26. O. V. Gulyakevich, A. L. Mikhal’chuk, Chem. Heterocycl. Compd. (Engl. Transl.), 1995, 31, 835; DOI: https://doi.org/10.1007/BF01170745.

    Article  Google Scholar 

  27. V. Nair, J. Mathew, K. V. Radhakrishnan, J. Chem. Soc., Perkin Trans. 1, 1996, 1487; DOI: https://doi.org/10.1039/P19960001487.

  28. N. N. Bogdashev, N. A. Tukhovskaya, A. V. Ivchenko, E. T. Oganesyan, Pharm.Chem. J. (Engl. Transl.), 1998, 32, 200; DOI: https://doi.org/10.1007/BF02464209.

    Article  Google Scholar 

  29. H. W. Lam, P. A. Cooke, G. Pattenden, W. M. Bandaranayake, W. A. Wickramasinghe, J. Chem. Soc., Perkin Trans. 1, 1999, 847; DOI: https://doi.org/10.1039/A901323G.

  30. D. Shi, Y. Wang, Z. Lu, G. Dai, Synth. Commun., 2000, 30, 713; DOI: https://doi.org/10.1080/00397910008087374.

    Article  CAS  Google Scholar 

  31. A. N. Andin, V. A. Kaminskii, S. V. Dubovitskii, Heterocycl. Commun., 2001, 7, 155; DOI: https://doi.org/10.1515/HC.2001.7.2.155.

    Article  CAS  Google Scholar 

  32. L. V. Reis, A. M. Lobo, S. Prabhakar, M. P. Duarte, Eur. J. Org. Chem., 2003, 1, 190; DOI: https://doi.org/10.1002/1099-0690(200301)2003:1<190:AID-EJOC190>3.0.CO; 2-W.

    Article  Google Scholar 

  33. D.-Q. Shi, S.-N. Ni, Y. Fang, J.-W. Shi, G.-L. Dou, X.-Y. Li, X.-S. Wang, J. Heterocycl. Chem., 2008, 45, 653; DOI: https://doi.org/10.1002/jhet.5570450303.

    Article  CAS  Google Scholar 

  34. P. Ashokkumar, V. T. Ramakrishnan, P. Ramamurthy, Eur. J. Org. Chem., 2009, 5941; DOI: https://doi.org/10.1002/ejoc.200900570.

  35. C. Zhu, A. Yoshimura, P. Solntsev, L. Ji, Y. Wei, V. N. Nemykhin, V. V. Zhdankin, Chem. Commun., 2012, 48, 10108; DOI: https://doi.org/10.1039/C2CC35708A.

    Article  CAS  Google Scholar 

  36. J. Ghosh, P. Biswas, M. G. B. Drew, C. Bandyopadhyay, Mol. Divers., 2015, 19, 541; DOI: https://doi.org/10.1007/s11030-015-9573-7.

    Article  CAS  PubMed  Google Scholar 

  37. D. Kumbhar, R. Patil, A. Patravale, D. Chandam, S. Jadhav, M. Deshmukh, Synth. Commun., 2016, 46, 85; DOI: https://doi.org/10.1080/00397911.2015.1121281.

    Article  CAS  Google Scholar 

  38. A. N. Andin, D. A. Shvalov, Russ. J. Org. Chem. (Engl. Transl.), 2018, 54, 1329; DOI: https://doi.org/10.1134/S1070428018090105.

    Article  CAS  Google Scholar 

  39. V. L. Gein, A. N. Prudnikova, A. A. Kurbatova, M. V. Dmitriev, V. V. Novikova, I. P. Rudakova, A. L. Starikov, Russ. J. Gen. Chem. (Engl. Transl.), 2019, 89, 881; DOI: https://doi.org/10.1134/S1070363219050049.

    Article  CAS  Google Scholar 

  40. M. A. Bastrakov, A. K. Fedorenko, A. M. Starosotnikov, Russ. Chem. Bull., 2020, 69, 394; DOI: https://doi.org/10.1007/s11172-020-2774-4.

    Article  CAS  Google Scholar 

  41. S. S. Shatokhin, V. A. Tuskaev, S. Ch. Gagieva, E. T. Oganesyan, Russ. Chem. Bull., 2021, 70, 1011; DOI: https://doi.org/10.1007/s11172-021-3183-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. T. S. Khlebnikova, V. G. Zinovich, Yu. A. Piven’, A. V. Baranovsky, F. A. Lakhvich, R. E. Trifonov, Russ. J. Gen. Chem. (Engl. Transl.), 2021, 91, 1438; DOI: https://doi.org/10.1134/S1070363221080028.

    Article  Google Scholar 

  43. S. Siddiquee, S. A. Azad, F. Abu Bakar, L. Naher, S. Vijay Kumar, J. Saudi Chem. Soc., 2015, 19, 243; DOI: https://doi.org/10.1016/j.jscs.2012.02.007.

    Article  Google Scholar 

  44. K. Saravanakumar, S. Mandava, R. Chellia, E. Jeevithan, R. S. B. Yelamanchi, D. Mandava, W. W. Hui, J. Lee, D.-H. Oh, K. Kathiresan, M.-H. Wang, Microb. Pathog., 2019, 126, 19; DOI: https://doi.org/10.1016/j.micpath.2018.10.011.

    Article  CAS  PubMed  Google Scholar 

  45. S. Karabulut, H. Namli, J. Leszczynski, J. Comput. Aided Mol. Des., 2013, 27, 681; DOI: https://doi.org/10.1007/s10822-013-9669-z.

    Article  CAS  PubMed  Google Scholar 

  46. R. P. Bell, G. G. Davis, J. Chem. Soc., 1965, 353; DOI: https://doi.org/10.1039/JR9650000353.

  47. A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys., 1985, 83, 735; DOI: https://doi.org/10.1063/1.449486.

    Article  CAS  Google Scholar 

  48. A. E. Reed, F. Weinhold, J. Chem. Phys., 1985, 83, 1736; DOI: https://doi.org/10.1063/1.449360.

    Article  CAS  Google Scholar 

  49. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem., 1994, 98, 11623; DOI: https://doi.org/10.1021/j100096a001.

    Article  CAS  Google Scholar 

  50. S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys., 1981, 55, 117; DOI: https://doi.org/10.1016/0301-0104(81)85090-2.

    Article  CAS  Google Scholar 

  51. Gaussian 16W, Version 1.1, Gaussian Inc., Wallingford (CT), 2019.

  52. C. Peng, H. B. Schlegel, Israel J. Chem., 1993, 33, 449; DOI: https://doi.org/10.1002/ijch.199300051.

    Article  CAS  Google Scholar 

  53. K. Fukui, Acc. Chem. Res., 1981, 14, 363; DOI: https://doi.org/10.1021/ar00072a001.

    Article  CAS  Google Scholar 

  54. H. P. Hratchian, H. B. Schlegel. Theory Appl. Computational Chemistry: The first 40 years, Eds. C. E. Dykstra, G. Frenking, K. S. Kim, G. Scuseria, Elsevier, Amsterdam, 2005, p. 195–249.

  55. B. D. Akehurst, J. R. Bartels-Keith, J. Chem. Soc., 1957, 4798; DOI: https://doi.org/10.1039/JR570004798.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Shestak.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2241–2254, October, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.L., Glazunov, V.P., Balaneva, N.N. et al. Reactions of dimedone and alkyl orthoformates with and without activators. Russ Chem Bull 71, 2241–2254 (2022). https://doi.org/10.1007/s11172-022-3652-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3652-6

Key words

Navigation