Skip to main content
Log in

New azo dyes based on 8-methoxy-2,2,4-trimethyl-1,2-dihydroquinoline and N-substituted tetrazoles

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A new procedure for the synthesis of azo dyes based on 8-methoxy-2,2,4-trimethyl-1,2-dihydroquinoline and 1- or 2-substituted tetrazoles results in a crucial increase in the yields of the target compounds. The structures of the synthesized dyes containing Me, But, and Ad substituents at the 1 and 2 positions of the tetrazole moiety were established by NMR spectroscopy and X-ray diffraction analysis. The most stable conformations of the dyes depending on the substituent and the solvent were determined. The electronic absorption spectra in different solvents were characterized experimentally and theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Merino, Chem. Soc. Rev., 2011, 40, 3835; DOI: https://doi.org/10.1039/C0CS00183J.

    Article  CAS  PubMed  Google Scholar 

  2. S. Crespi, N. A. Simeth, B. König, Nat. Rev. Chem., 2019, 3, 133; DOI: https://doi.org/10.1038/s41570-019-0074-6.

    Article  CAS  Google Scholar 

  3. Z. F. Liu, K. Hashimoto, A. Fujishima, Nature, 1990, 347, 658; DOI: https://doi.org/10.1038/347658a0.

    Article  CAS  Google Scholar 

  4. T. Ikeda, O. Tsutsumi, Science, 1995, 268, 1873; DOI: https://doi.org/10.1126/science.268.5219.1873.

    Article  CAS  PubMed  Google Scholar 

  5. J. Broichhagen, J. A. Frank, D. Trauner, Acc. Chem. Res., 2015, 48, 1947; DOI: https://doi.org/10.1021/acs._ccounts.5b00129.

    Article  CAS  PubMed  Google Scholar 

  6. M. Zhu, H. Zhou, Org. Biomol. Chem., 2018, 16, 8434; DOI: https://doi.org/10.1039/C8OB02157K.

    Article  CAS  PubMed  Google Scholar 

  7. R. J. Mart, R. K. Allemann, Chem. Commun., 2016, 52, 12262; DOI: https://doi.org/10.1039/C6CC04004G.

    Article  CAS  Google Scholar 

  8. I. W. Willner, S. Rubin, Angew. Chem., Int. Ed., Engl., 1996, 35, 367; DOI: https://doi.org/10.1002/anie.199603671.

    Article  CAS  Google Scholar 

  9. A. Nojiri, N. Kumagai, M. Shibasaki, Chem. Commun., 2013, 49, 4628; DOI: https://doi.org/10.1039/C3CC00008G.

    Article  CAS  Google Scholar 

  10. G. A Selivanova, Russ. Chem. Bull., 2021, 70, 213; DOI: https://doi.org/10.1007/s11172-021-3080-z.

    Article  Google Scholar 

  11. Y. Xu, C. Gao, J. Andréasson, M. Grøtli, Org. Lett., 2018, 20, 4875; DOI: https://doi.org/10.1021/acs.orglett.8b02014.

    Article  CAS  PubMed  Google Scholar 

  12. D. Cameron, S. Eisler, J. Phys. Org. Chem., 2018, 31, e3858; DOI: https://doi.org/10.1002/poc.3858.

    Article  Google Scholar 

  13. A. Saylam, Z. Seferoğlu, N. Ertan, Dyes Pigments, 2008, 76, 470; DOI: https://doi.org/10.1016/j.dyepig.2006.10.005.

    Article  CAS  Google Scholar 

  14. S. Samanta, T. M. McCormick, S. K. Schmidt, D. S. Seferos, G. A. Woolley, Chem. Commun., 2013, 49, 10314; DOI: https://doi.org/10.1039/C3CC46045B.

    Article  CAS  Google Scholar 

  15. J. Calbo, C. E. Weston, A. J. P. White, H. S. Rzepa, J. Contreras-Garcia, M. J. Fuchter, J. Am. Chem. Soc., 2017, 139, 1261; DOI: https://doi.org/10.1021/jacs.6b11626.

    Article  CAS  PubMed  Google Scholar 

  16. N. A. Simeth, S. Crespi, M. Fagnoni, B. König, J. Am. Chem. Soc., 2018, 140, 2940; DOI: https://doi.org/10.1021/jacs.7b12871.

    Article  CAS  PubMed  Google Scholar 

  17. O. N. Lygo, E. N. Khodot, V. A. Ogurtsov, I. V. Shelaev, F. E. Gostev, T. D. Nekipelova, High Energy Chem., 2014, 48, 325; DOI: https://doi.org/10.1134/S0018143914050099.

    Article  CAS  Google Scholar 

  18. T. D. Nekipelova, E. N. Khodot, O. N. Klimovich (Lygo), L. N. Kurkovskaya, I. I. Levina, V. A. Kuzmin, Photochem. Photobiol. Sci., 2016, 15, 1558; DOI: https://doi.org/10.1039/C6PP00251J.

    Article  CAS  PubMed  Google Scholar 

  19. I. L. Shegal, K. V. Stanovkina, N. G. Kovalenko, L. M. Shegal, Chem. Heterocycl. Compd., 1974, 10, 369; DOI: https://doi.org/10.1007/BF00472433.

    Article  Google Scholar 

  20. H. H. Davey, R. D. Lee, T. J. Marks, J. Org. Chem., 1999, 64, 4976; DOI: https://doi.org/10.1021/jo990235x.

    Article  CAS  PubMed  Google Scholar 

  21. R. A. Henry, J. Heterocycl. Chem., 1976, 13, 391; DOI: https://doi.org/10.1002/jhet.5570130240.

    Article  CAS  Google Scholar 

  22. A. O. Koren, P. N. Gaponik, Chem. Heterocycl. Compd., 1990, 26, 1366; DOI: https://doi.org/10.1007/BF00473965.

    Article  Google Scholar 

  23. T. M. Klapötke, C. Miró Sabaté, A. Penger, M. Rusan, J. M. Welch, Eur. J. Inorg. Chem., 2009, 880; DOI: https://doi.org/10.1002/ejic.200800995.

  24. A. V. Logvinov, I. N. Polyakova, E. L. Golod, Russ. J. Gen. Chem., 2009, 79, 2230; DOI: https://doi.org/10.1134/S1070363209100247.

    Article  CAS  Google Scholar 

  25. A. V. Logvinov, I. N. Polyakova, E. L. Golod, Russ. J. Gen. Chem., 2010, 80, 2366; DOI: https://doi.org/10.1134/S1070363210110228.

    Article  CAS  Google Scholar 

  26. P. B. Gordeev, G. A. Smirnov, Russ. Chem. Bull., 2021, 70, 1613; DOI: https://doi.org/10.1007/s11172-021-3258-4.

    Article  CAS  Google Scholar 

  27. F. Neese, F. Wennmohs, U. Becker, C. J. Riplinger, Chem. Phys., 2020, 152, 224108; DOI: https://doi.org/10.1063/5.0004608.

    CAS  Google Scholar 

  28. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378; DOI: https://doi.org/10.1021/jp810292n.

    Article  CAS  PubMed  Google Scholar 

  29. C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158; DOI: https://doi.org/10.1063/1.478522.

    Article  CAS  Google Scholar 

  30. A. Schafer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829; DOI: https://doi.org/10.1063/1.467146.

    Article  Google Scholar 

  31. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104; DOI: https://doi.org/10.1063/1.3382344.

    Article  PubMed  Google Scholar 

  32. F. Neese, G. Olbrich, Chem. Phys. Lett., 2002, 362, 170; DOI: https://doi.org/10.1016/S0009-2614(02)01053-9.

    Article  CAS  Google Scholar 

  33. CrysAlisPro, Version 1.171.41.106a, Rigaku Oxford Diffraction, 2021.

  34. G. M. Sheldrick, Acta Cryst., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Google Scholar 

  35. G. M. Sheldrick, Acta Cryst., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Google Scholar 

  36. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7; DOI: https://doi.org/10.1107/S0021889802022112.

    Article  CAS  Google Scholar 

  37. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, Towler M., J. van de Streek, J. Appl. Crystallogr., 2006, 39, 453; DOI: https://doi.org/10.1107/S002188980600731X.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within the framework of the state assignment of the N. M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences (Theme No. 1201253303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Nekipelova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2207–2217, October, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests. References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodot, E.N., Golovina, G.V., Timokhina, E.N. et al. New azo dyes based on 8-methoxy-2,2,4-trimethyl-1,2-dihydroquinoline and N-substituted tetrazoles. Russ Chem Bull 71, 2207–2217 (2022). https://doi.org/10.1007/s11172-022-3647-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3647-3

Key words

Navigation